Advertisements
Advertisements
प्रश्न
If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to
पर्याय
(a) S/R
(b) R/S
(c) (R/S)n
(d) (S/R)n
उत्तर
(d) \[\left( \frac{S}{R} \right)^n\]
\[\text{ Sum of n terms of the G . P } . , S = \frac{a\left( r^n - 1 \right)}{\left( r - 1 \right)}\]
\[\text{ Product of n terms of the G . P } . , P = a^n r^\left[ \frac{n\left( n - 1 \right)}{2} \right] \]
\[\text{ Sum of the reciprocals of n terms of the G . P } . , R = \frac{\left[ \frac{1}{r^n} - 1 \right]}{a\left( \frac{1}{r} - 1 \right)} = \frac{\left( r^n - 1 \right)}{a r^\left( n - 1 \right) \left( r - 1 \right)}\]
\[ \therefore P^2 = \left\{ a^2 r^\frac{2\left( n - 1 \right)}{2} \right\}^n \]
\[ \Rightarrow P^2 = \left\{ \frac{\frac{a\left( r^n - 1 \right)}{\left( r - 1 \right)}}{\frac{\left( r^n - 1 \right)}{a r^\left( n - 1 \right) \left( r - 1 \right)}} \right\}^n \]
\[ \Rightarrow P^2 = \left\{ \frac{S}{R} \right\}^n \]
\[\text{ Let the first term of the G . P . be a and the common ratio be r } . \]
\[\text{ Sum of n terms }, S = \frac{a\left( r^n - 1 \right)}{r - 1}\]
\[\text{ Product of the G . P } . , P = a^n r^\frac{n\left( n + 1 \right)}{2} \]
\[\text{ Sum of the reciprocals of n terms }, R = \frac{\left( \frac{1}{r^n - 1} \right)}{a\left( \frac{1}{r^{} - 1} \right)} = \frac{\left( \frac{1 - r^n}{r^n} \right)}{a\left( \frac{1 - r}{r} \right)}\]
\[ p^2 = \left\{ a^2 r^\frac{\left( n + 1 \right)}{2} \right\}^n \]
\[ p^2 = \left\{ \frac{\frac{a\left( r^n - 1 \right)}{r - 1}}{\frac{\left( \frac{1 - r^n}{r^n} \right)}{a\left( \frac{1 - r}{r} \right)}} \right\}^n = \left\{ \frac{S}{R} \right\}^n\]
APPEARS IN
संबंधित प्रश्न
The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.
Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).
Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).
Insert two numbers between 3 and 81 so that the resulting sequence is G.P.
Find the value of n so that `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.
If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.
Find :
the 12th term of the G.P.
\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]
Find the 4th term from the end of the G.P.
Which term of the G.P. :
\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]
If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.
Find the sum of the following geometric series:
\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text { to n terms }\]
Find the sum of the following series:
9 + 99 + 999 + ... to n terms;
The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.
The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.
The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.
Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.
Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.
The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.
Three numbers are in A.P. and their sum is 15. If 1, 3, 9 be added to them respectively, they form a G.P. Find the numbers.
The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.
If a, b, c are in G.P., prove that:
\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]
If a, b, c are in G.P., prove that the following is also in G.P.:
a2, b2, c2
If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.
Insert 5 geometric means between 16 and \[\frac{1}{4}\] .
If logxa, ax/2 and logb x are in G.P., then write the value of x.
If a, b, c are in G.P. and x, y are AM's between a, b and b,c respectively, then
For the G.P. if a = `7/243`, r = 3 find t6.
For the G.P. if a = `2/3`, t6 = 162, find r.
If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.
A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?
For the following G.P.s, find Sn
3, 6, 12, 24, ...
For a G.P. if a = 2, r = 3, Sn = 242 find n
Find the sum to n terms of the sequence.
0.2, 0.02, 0.002, ...
If S, P, R are the sum, product, and sum of the reciprocals of n terms of a G.P. respectively, then verify that `["S"/"R"]^"n"` = P2
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares
Select the correct answer from the given alternative.
Which term of the geometric progression 1, 2, 4, 8, ... is 2048
Answer the following:
Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...
Answer the following:
Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.
Answer the following:
If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0
Answer the following:
If p, q, r, s are in G.P., show that (p2 + q2 + r2) (q2 + r2 + s2) = (pq + qr + rs)2