Advertisements
Advertisements
Question
If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to
Options
(a) S/R
(b) R/S
(c) (R/S)n
(d) (S/R)n
Solution
(d) \[\left( \frac{S}{R} \right)^n\]
\[\text{ Sum of n terms of the G . P } . , S = \frac{a\left( r^n - 1 \right)}{\left( r - 1 \right)}\]
\[\text{ Product of n terms of the G . P } . , P = a^n r^\left[ \frac{n\left( n - 1 \right)}{2} \right] \]
\[\text{ Sum of the reciprocals of n terms of the G . P } . , R = \frac{\left[ \frac{1}{r^n} - 1 \right]}{a\left( \frac{1}{r} - 1 \right)} = \frac{\left( r^n - 1 \right)}{a r^\left( n - 1 \right) \left( r - 1 \right)}\]
\[ \therefore P^2 = \left\{ a^2 r^\frac{2\left( n - 1 \right)}{2} \right\}^n \]
\[ \Rightarrow P^2 = \left\{ \frac{\frac{a\left( r^n - 1 \right)}{\left( r - 1 \right)}}{\frac{\left( r^n - 1 \right)}{a r^\left( n - 1 \right) \left( r - 1 \right)}} \right\}^n \]
\[ \Rightarrow P^2 = \left\{ \frac{S}{R} \right\}^n \]
\[\text{ Let the first term of the G . P . be a and the common ratio be r } . \]
\[\text{ Sum of n terms }, S = \frac{a\left( r^n - 1 \right)}{r - 1}\]
\[\text{ Product of the G . P } . , P = a^n r^\frac{n\left( n + 1 \right)}{2} \]
\[\text{ Sum of the reciprocals of n terms }, R = \frac{\left( \frac{1}{r^n - 1} \right)}{a\left( \frac{1}{r^{} - 1} \right)} = \frac{\left( \frac{1 - r^n}{r^n} \right)}{a\left( \frac{1 - r}{r} \right)}\]
\[ p^2 = \left\{ a^2 r^\frac{\left( n + 1 \right)}{2} \right\}^n \]
\[ p^2 = \left\{ \frac{\frac{a\left( r^n - 1 \right)}{r - 1}}{\frac{\left( \frac{1 - r^n}{r^n} \right)}{a\left( \frac{1 - r}{r} \right)}} \right\}^n = \left\{ \frac{S}{R} \right\}^n\]
APPEARS IN
RELATED QUESTIONS
Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.
Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).
Insert two numbers between 3 and 81 so that the resulting sequence is G.P.
The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
4, −2, 1, −1/2, ...
Find:
the ninth term of the G.P. 1, 4, 16, 64, ...
In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.
If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].
The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.
Find the sum of the following geometric progression:
1, 3, 9, 27, ... to 8 terms;
Find the sum of the following geometric series:
\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]
Find the sum of the following geometric series:
1, −a, a2, −a3, ....to n terms (a ≠ 1)
Find the sum of the following series:
0.5 + 0.55 + 0.555 + ... to n terms.
The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.
If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).
Find the rational numbers having the following decimal expansion:
\[3 . 5\overline 2\]
Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.
If a, b, c are in G.P., prove that log a, log b, log c are in A.P.
Three numbers are in A.P. and their sum is 15. If 1, 3, 9 be added to them respectively, they form a G.P. Find the numbers.
If a, b, c, d are in G.P., prove that:
(a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2
If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.
If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.
If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.
Find the geometric means of the following pairs of number:
−8 and −2
If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
Check whether the following sequence is G.P. If so, write tn.
2, 6, 18, 54, …
For the G.P. if r = − 3 and t6 = 1701, find a.
For what values of x, the terms `4/3`, x, `4/27` are in G.P.?
For the following G.P.s, find Sn
3, 6, 12, 24, ...
Find: `sum_("r" = 1)^10(3 xx 2^"r")`
Find: `sum_("r" = 1)^10 5 xx 3^"r"`
Express the following recurring decimal as a rational number:
`2.bar(4)`
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.
Answer the following:
For a G.P. if t2 = 7, t4 = 1575 find a
The third term of G.P. is 4. The product of its first 5 terms is ______.
For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.
For an increasing G.P. a1, a2 , a3 ........., an, if a6 = 4a4, a9 – a7 = 192, then the value of `sum_(i = 1)^∞ 1/a_i` is ______.