English

If Pth, Qth, Rth and Sth Terms of an A.P. Be in G.P., Then Prove that P − Q, Q − R, R − S Are in G.P. - Mathematics

Advertisements
Advertisements

Question

If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.

Solution

\[\text { Here, } a_p = a + \left( p - 1 \right)d\]

\[ a_q = a + \left( q - 1 \right)d\]

\[ a_r = a + \left( r - 1 \right)d\]

\[ a_s = a + \left( s - 1 \right)d\]

\[\text { It is given that }a_p , a_q , a_r \text { and } a_s\text {  are in G . P } . \]

\[ \therefore \frac{a_q}{a_p} = \frac{a_r}{a_q} = \frac{a_q - a_r}{a_p - a_q} = \frac{q - r}{p - q} . . . . . . . (i)\]

\[\text { Similarly }, \frac{a_r}{a_q} = \frac{a_s}{a_r} = \frac{a_r - a_s}{a_q - a_r} = \frac{r - s}{q - r} . . . . . . . (ii)\]

\[\text { Using  }\left( i \right) \text { and  }\left( ii \right): \]

\[\frac{q - r}{p - q} = \frac{r - s}{q - r}, \]

\[\text { Therefore }, p - q, q - r\text {  and } r - s \text { are in G . P } .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Geometric Progression - Exercise 20.5 [Page 46]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 20 Geometric Progression
Exercise 20.5 | Q 16 | Page 46

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate `sum_(k=1)^11 (2+3^k )`


Find the sum to n terms of the sequence, 8, 88, 888, 8888… .


Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.


If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .


The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.


In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.


The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.


The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.


Find the sum of the following geometric series:

1, −a, a2, −a3, ....to n terms (a ≠ 1)


Find the sum of the following serie:

5 + 55 + 555 + ... to n terms;


The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.


Let an be the nth term of the G.P. of positive numbers.

Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.


Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.


Find the sum of the following serie to infinity:

8 +  \[4\sqrt{2}\] + 4 + ... ∞


One side of an equilateral triangle is 18 cm. The mid-points of its sides are joined to form another triangle whose mid-points, in turn, are joined to form still another triangle. The process is continued indefinitely. Find the sum of the (i) perimeters of all the triangles. (ii) areas of all triangles.


The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.


Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.


If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.

  

If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.


If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]


Let x be the A.M. and yz be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\]  is equal to 


Check whether the following sequence is G.P. If so, write tn.

2, 6, 18, 54, …


Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.


Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1


The numbers x − 6, 2x and x2 are in G.P. Find x


The numbers x − 6, 2x and x2 are in G.P. Find nth term


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`-3, 1, (-1)/3, 1/9, ...`


Find : `sum_("r" = 1)^oo 4(0.5)^"r"`


Select the correct answer from the given alternative.

The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –


Answer the following:

For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r


Answer the following:

For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.


Answer the following:

If for a G.P. t3 = `1/3`, t6 = `1/81` find r


Answer the following:

If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.


At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.


If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c


The third term of G.P. is 4. The product of its first 5 terms is ______.


The third term of a G.P. is 4, the product of the first five terms is ______.


If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×