Advertisements
Advertisements
Question
Evaluate `sum_(k=1)^11 (2+3^k )`
Solution
`sum_("k" = 1)^11 (2 + 3^"k") = (2 + 3) + (2 + 3^2) + (2 + 3^3) + ......`up to 11 terms
= `2 × 11 + (3 + 3^2 + 3^3 + ......` up to 11 terms)
= `22 + (3(3^11 - 1))/(3 - 1)` ......... `[∵ "a" = 3, "r" = 3, "S" = ("a"("r"^"n" - 1))/("r" - 1)]`
= `22 + 3/2 (3^11 - 1)`
APPEARS IN
RELATED QUESTIONS
Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`
The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.
Which term of the following sequence:
`sqrt3, 3, 3sqrt3`, .... is 729?
Which term of the following sequence:
`1/3, 1/9, 1/27`, ...., is `1/19683`?
Show that one of the following progression is a G.P. Also, find the common ratio in case:
\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]
If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that a, b, c and d are in G.P.
Find three numbers in G.P. whose sum is 38 and their product is 1728.
The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.
Find the sum of the following geometric series:
0.15 + 0.015 + 0.0015 + ... to 8 terms;
Find the sum of the following geometric series:
\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8 terms };\]
Find the sum of the following geometric series:
(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;
Find the sum of the following serie:
5 + 55 + 555 + ... to n terms;
Find the sum of the following series:
0.6 + 0.66 + 0.666 + .... to n terms
The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.
If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively
\[\frac{2S S_1}{S^2 + S_1}\text { and } \frac{S^2 - S_1}{S^2 + S_1}\]
If a, b, c are in G.P., prove that log a, log b, log c are in A.P.
If a, b, c, d are in G.P., prove that:
(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.
If a, b, c, d are in G.P., prove that:
(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.
If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)
If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.
If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is
Check whether the following sequence is G.P. If so, write tn.
1, –5, 25, –125 …
Check whether the following sequence is G.P. If so, write tn.
3, 4, 5, 6, …
For what values of x, the terms `4/3`, x, `4/27` are in G.P.?
The numbers 3, x, and x + 6 form are in G.P. Find 20th term.
For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.
If S, P, R are the sum, product, and sum of the reciprocals of n terms of a G.P. respectively, then verify that `["S"/"R"]^"n"` = P2
Find: `sum_("r" = 1)^10(3 xx 2^"r")`
The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]
If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.
The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.
Find : `sum_("n" = 1)^oo 0.4^"n"`
Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.
Answer the following:
For a G.P. if t2 = 7, t4 = 1575 find a
Answer the following:
If p, q, r, s are in G.P., show that (p2 + q2 + r2) (q2 + r2 + s2) = (pq + qr + rs)2
At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.
The third term of a G.P. is 4, the product of the first five terms is ______.
The sum or difference of two G.P.s, is again a G.P.
If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.