Advertisements
Advertisements
Question
The numbers 3, x, and x + 6 form are in G.P. Find 20th term.
Solution
r = `6/3` = 2 or r = `(-3)/3` = – 1
tn = arn–1
∴ t20 = 3(219) or t20 = 3(– 1)19
∴ t20 = 3(219) or t20 = – 3
APPEARS IN
RELATED QUESTIONS
The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.
Which term of the following sequence:
`sqrt3, 3, 3sqrt3`, .... is 729?
Which term of the following sequence:
`1/3, 1/9, 1/27`, ...., is `1/19683`?
For what values of x, the numbers `-2/7, x, -7/2` are in G.P?
The sum of first three terms of a G.P. is `39/10` and their product is 1. Find the common ratio and the terms.
Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that P2Rn = Sn
If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.
Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.
Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?
If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].
Find the sum of the following geometric progression:
2, 6, 18, ... to 7 terms;
Find the sum of the following geometric series:
\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8 terms };\]
Evaluate the following:
\[\sum^{10}_{n = 2} 4^n\]
How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\] ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?
The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.
Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.
If a, b, c are in G.P., prove that log a, log b, log c are in A.P.
If a, b, c, d are in G.P., prove that:
(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.
If a, b, c, d are in G.P., prove that:
\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]
If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
Find the geometric means of the following pairs of number:
a3b and ab3
If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is
The nth term of a G.P. is 128 and the sum of its n terms is 225. If its common ratio is 2, then its first term is
If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]
If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is
Check whether the following sequence is G.P. If so, write tn.
`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...
For what values of x, the terms `4/3`, x, `4/27` are in G.P.?
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.
The numbers x − 6, 2x and x2 are in G.P. Find 1st term
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.
If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares
Answer the following:
If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q
Answer the following:
Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.
If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c
If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.
If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.