English

Find the Geometric Means of the Following Pairs of Number: A3b and Ab3 - Mathematics

Advertisements
Advertisements

Question

Find the geometric means of the following pairs of number:

a3b and ab3

Solution

\[\text {  Let the G . M . between }a^3 \text { b and a } b^3 \text { be G } . \]

\[\text { Then,} a^3 \text { b, G and } a b^3 \text { are in G . P } . \]

\[ \therefore G^2 = a^3 b \times a b^3 \]

\[ \Rightarrow G^2 = a^4 b^4 \]

\[ \Rightarrow G = \sqrt{a^4 b^4}\]

\[ \Rightarrow G = a^2 b^2\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Geometric Progression - Exercise 20.6 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 20 Geometric Progression
Exercise 20.6 | Q 4.2 | Page 55

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.


If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.


Find the value of n so that  `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

−2/3, −6, −54, ...


Find:
the ninth term of the G.P. 1, 4, 16, 64, ...


Find :

the 10th term of the G.P.

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]


Which term of the G.P. :

\[2, 2\sqrt{2}, 4, . . .\text {  is }128 ?\]


The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.


In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.


If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that abc and d are in G.P.


If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].


The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.


The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is \[87\frac{1}{2}\] . Find them.


Find the sum of the following geometric progression:

1, 3, 9, 27, ... to 8 terms;


Evaluate the following:

\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]


If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.


Find the sum of the following series to infinity:

10 − 9 + 8.1 − 7.29 + ... ∞


Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.


Find the rational numbers having the following decimal expansion: 

\[0 . \overline3\]


If a, b, c are in G.P., prove that:

\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]


If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.


If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.


If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.

  

Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .


If logxa, ax/2 and logb x are in G.P., then write the value of x.


If pq be two A.M.'s and G be one G.M. between two numbers, then G2


If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]


Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals 


For the G.P. if r = − 3 and t6 = 1701, find a.


Which term of the G.P. 5, 25, 125, 625, … is 510?


The numbers x − 6, 2x and x2 are in G.P. Find x


For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r


If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.


Select the correct answer from the given alternative.

If common ratio of the G.P is 5, 5th term is 1875, the first term is -


Answer the following:

For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.


At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.


The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm3 and the total surface area is 252cm2. The length of the longest edge is ______.


Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×