Advertisements
Advertisements
Question
Evaluate the following:
\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]
Solution
\[S_n = \sum^n_{k = 1} \left( 2^k + 3^{k - 1} \right)\]
\[ = \sum^n_{k = 1} 2^k + \sum^n_{k = 1} 3^{k - 1} \]
\[ = \left( 2 + 4 + 8 + . . . + 2^n \right) + \left( 1 + 3 + 9 + . . . + 3^n \right) \]
\[ = 2\left( \frac{2^n - 1}{2 - 1} \right) + 1\left( \frac{3^n - 1}{3 - 1} \right) \]
\[ = \frac{1}{2}\left( 2^{n + 2} - 4 + 3^n - 1 \right) \]
\[ = \frac{1}{2}\left( 2^{n + 2} + 3^n - 5 \right)\]
APPEARS IN
RELATED QUESTIONS
If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`
if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.
Find:
the ninth term of the G.P. 1, 4, 16, 64, ...
Find :
the 8th term of the G.P. 0.3, 0.06, 0.012, ...
Find :
the 12th term of the G.P.
\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]
Find the 4th term from the end of the G.P.
\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]
If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.
If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.
Find the sum of the following geometric series:
\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text { to n terms }\]
The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.
Find the sum :
\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]
The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].
How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?
Let an be the nth term of the G.P. of positive numbers.
Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.
Express the recurring decimal 0.125125125 ... as a rational number.
If a, b, c, d are in G.P., prove that:
(a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2
If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)
If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .
If logxa, ax/2 and logb x are in G.P., then write the value of x.
If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.
The fractional value of 2.357 is
If a, b, c are in G.P. and x, y are AM's between a, b and b,c respectively, then
In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is
If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.
For the following G.P.s, find Sn
3, 6, 12, 24, ...
For a G.P. if S5 = 1023 , r = 4, Find a
Find : `sum_("r" = 1)^oo (-1/3)^"r"`
Answer the following:
In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term
Answer the following:
Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...
Answer the following:
For a G.P. if t2 = 7, t4 = 1575 find a
Answer the following:
Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.
If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c
If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.
The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.
If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.