English

How Many Terms of the G.P. 3, 3 2 , 3 4 ..... Are Needed to Give the Sum 3069 512 ? - Mathematics

Advertisements
Advertisements

Question

How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?

Solution

\[\text { Here }, a = 3 \text { and }\]

\[\text { Common ratio }, r = \frac{1}{2} \]

\[\text { And, } S_n = \frac{3069}{512}\]

\[ \therefore S_n = 3\left\{ \frac{1 - \left( \frac{1}{2} \right)^n}{1 - \frac{1}{2}} \right\}\]

\[ \Rightarrow \frac{3069}{512} = 3\left\{ \frac{1 - \frac{1}{2^n}}{1 - \frac{1}{2}} \right\} \]

\[ \Rightarrow \frac{3069}{512} = 6 \left\{ 1 - \frac{1}{2^n} \right\}\]

\[ \Rightarrow \frac{3069}{3072} = 1 - \frac{1}{2^n} \]

\[ \Rightarrow \frac{1}{2^n} = 1 - \frac{3069}{3072} \]

\[ \Rightarrow \frac{1}{2^n} = \frac{3}{3072}\]

\[ \Rightarrow 2^n = \frac{3072}{3} \]

\[ \Rightarrow 2^n = 1024 \]

\[ \Rightarrow 2^n = 2^{10} \]

\[ \therefore n = 10\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Geometric Progression - Exercise 20.3 [Page 29]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 20 Geometric Progression
Exercise 20.3 | Q 17 | Page 29

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.


If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`


If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.


The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.


If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.


if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

4, −2, 1, −1/2, ...


Find:

the 10th term of the G.P.

\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]

 


Find :

the 8th term of the G.P. 0.3, 0.06, 0.012, ...


Find :

the 10th term of the G.P.

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]


If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.


If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].


Find three numbers in G.P. whose sum is 38 and their product is 1728.


Find the sum of the following geometric series:

\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8  terms };\]


Evaluate the following:

\[\sum^{11}_{n = 1} (2 + 3^n )\]


If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.


If a, b, c, d are in G.P., prove that:

 (a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2


If a, b, c are in G.P., prove that the following is also in G.P.:

a2 + b2, ab + bc, b2 + c2


If a, b, c are in G.P., then prove that:

\[\frac{a^2 + ab + b^2}{bc + ca + ab} = \frac{b + a}{c + b}\]

If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.


If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is 


If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is 


Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.


For the following G.P.s, find Sn.

`sqrt(5)`, −5, `5sqrt(5)`, −25, ...


Find the sum to n terms of the sequence.

0.5, 0.05, 0.005, ...


If S, P, R are the sum, product, and sum of the reciprocals of n terms of a G.P. respectively, then verify that `["S"/"R"]^"n"` = P


If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term


Find : `sum_("n" = 1)^oo 0.4^"n"`


Select the correct answer from the given alternative.

The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –


Select the correct answer from the given alternative.

Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –


Answer the following:

Find three numbers in G.P. such that their sum is 35 and their product is 1000


Answer the following:

For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.


Answer the following:

For a G.P. if t2 = 7, t4 = 1575 find a


Answer the following:

If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.


The sum or difference of two G.P.s, is again a G.P.


The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×