English

Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is 1rn. - Mathematics

Advertisements
Advertisements

Question

Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.

Sum

Solution

Let the first term of the geometric progression be a and common ratio = `1/"r"^"n"`, then

Sum of n terms = `("a"(1 - "r"^"n"))/(1 - "r")`    .....(i)

(n + 1)th term = `"ar"^("n"+ 1 - 1)` = arn

∴ arn + arn + 1 + arn + 2 + ....... up to n terms

= `("ar"^"n"(1 - "r"^"n"))/(1 - "r")`   .....(ii)

Dividing equation (i) by (ii), we get

`("Sum of n terms")/("Sum of next n terms") = ("a"(1 - "r"^"n"))/(1 - "r") ÷ ("ar"^ "n"(1 - "r"^"n"))/(1 - "r")`

= `("a"(1 - "r"^"n"))/(1 - "r") xx (1 - "r")/("ar"^"n" (1 - "r"^ "n"))`

= `1/"r"^"n"`

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Sequences and Series - Exercise 9.3 [Page 193]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 9 Sequences and Series
Exercise 9.3 | Q 24 | Page 193

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Which term of the following sequence: 

`2, 2sqrt2, 4,.... is 128`


The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.


Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`


If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.


The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.


if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.


If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.


Find three numbers in G.P. whose sum is 65 and whose product is 3375.


Find three numbers in G.P. whose sum is 38 and their product is 1728.


Find the sum of the following geometric progression:

1, −1/2, 1/4, −1/8, ... to 9 terms;


Find the sum of the following geometric series:

 0.15 + 0.015 + 0.0015 + ... to 8 terms;


A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.


If a, b, c are in G.P., prove that:

a (b2 + c2) = c (a2 + b2)


If a, b, c are in G.P., prove that:

\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]


If a, b, c, d are in G.P., prove that:

(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.


If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.


If a, b, c are in A.P. and a, x, b and b, y, c are in G.P., show that x2, b2, y2 are in A.P.


If pth, qth and rth terms of an A.P. and G.P. are both a, b and c respectively, show that \[a^{b - c} b^{c - a} c^{a - b} = 1\]


Insert 5 geometric means between 16 and \[\frac{1}{4}\] .


Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .


If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.


If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is 


If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is


If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is 


The two geometric means between the numbers 1 and 64 are 


Check whether the following sequence is G.P. If so, write tn.

1, –5, 25, –125 …


Check whether the following sequence is G.P. If so, write tn.

3, 4, 5, 6, …


Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.


Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.


The numbers x − 6, 2x and x2 are in G.P. Find 1st term


The numbers x − 6, 2x and x2 are in G.P. Find nth term


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`


Express the following recurring decimal as a rational number:

`51.0bar(2)`


Answer the following:

For a G.P. if t2 = 7, t4 = 1575 find a


Answer the following:

If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.


At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.


If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1


For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.


The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×