Advertisements
Advertisements
Question
The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.
Solution
Let the two numbers be a and b.
geometric mean of a and b = `sqrt"ab"`
Given: a + b = `6sqrt"ab"`
`"a"+ "b" + 2sqrt"ab" = 8sqrt"ab"`
`(sqrt"a" + sqrt"b")^2 = 8sqrt"ab"` .......(i)
`"a" + "b" - 2 sqrt"ab" = 4sqrt"ab"`
`(sqrt"a" - sqrt"b")^2 = 4sqrt"ab"` .......(ii)
Dividing equation (i) by (ii), we get
`(sqrt"a" + sqrt"b")^2/(sqrt"a" - sqrt"b")^2 = (8sqrt"ab")/(4sqrt"ab") = 2`
or `(sqrt"a" + sqrt"b")/(sqrt"a" - sqrt"b") = sqrt2/1`
⇒ `((sqrt"a" + sqrt"b") + (sqrt"a" - sqrt"b"))/((sqrt"a" + sqrt"b") - (sqrt"a" - sqrt"b")) = (sqrt2 + 1)/(sqrt2 - 1)`
`(2sqrt"a")/(2sqrt"b") = sqrt"a"/sqrt"b" = (sqrt2 + 1)/(sqrt2 - 1)`
On squaring, `"a"/"b" =(sqrt2 + 1)^2/(sqrt2 - 1)^2 = (3 + 2sqrt2)/(3 - 2sqrt2)`
Hence, `"a"/"b" =(3 + 2sqrt2)/(3 - 2sqrt2)`
APPEARS IN
RELATED QUESTIONS
Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…
Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.
Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.
If a, b, c are in A.P,; b, c, d are in G.P and ` 1/c, 1/d,1/e` are in A.P. prove that a, c, e are in G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]
Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?
In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.
The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is \[87\frac{1}{2}\] . Find them.
The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.
If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).
Find the sum of the following series to infinity:
10 − 9 + 8.1 − 7.29 + ... ∞
Express the recurring decimal 0.125125125 ... as a rational number.
The sum of three numbers a, b, c in A.P. is 18. If a and b are each increased by 4 and c is increased by 36, the new numbers form a G.P. Find a, b, c.
The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.
If a, b, c are in G.P., prove that:
\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]
If a, b, c, d are in G.P., prove that:
(a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2
If a, b, c are in G.P., prove that the following is also in G.P.:
a3, b3, c3
Insert 6 geometric means between 27 and \[\frac{1}{81}\] .
If the fifth term of a G.P. is 2, then write the product of its 9 terms.
If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is
If A be one A.M. and p, q be two G.M.'s between two numbers, then 2 A is equal to
Check whether the following sequence is G.P. If so, write tn.
3, 4, 5, 6, …
If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio
The numbers 3, x, and x + 6 form are in G.P. Find x
The numbers x − 6, 2x and x2 are in G.P. Find nth term
For the following G.P.s, find Sn.
`sqrt(5)`, −5, `5sqrt(5)`, −25, ...
Find the sum to n terms of the sequence.
0.5, 0.05, 0.005, ...
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`2, 4/3, 8/9, 16/27, ...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
9, 8.1, 7.29, ...
Answer the following:
Find three numbers in G.P. such that their sum is 35 and their product is 1000
Answer the following:
Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...
Answer the following:
If for a G.P. first term is (27)2 and seventh term is (8)2, find S8
If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.
If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.