Advertisements
Advertisements
Question
If the fifth term of a G.P. is 2, then write the product of its 9 terms.
Solution
Here, a5 = 2
\[\Rightarrow a r^4 = 2\]
Product of the nine terms, i.e.
\[a, ar, a r^2 , a r^3 , a r^4 , a r^5 , a r^6 , a r^7 \text { and } a r^8\]
\[\left( a \times a r^8 \right)\left( ar \times a r^7 \right)\left( a r^2 \times a r^6 \right)\left( a r^3 \times a r^5 \right)\left( a r^4 \right) = \left( a r^4 \right)^9 \]
\[ \because a r^4 = 2\]
\[\text { Required product } = 2^9 = 512\]
APPEARS IN
RELATED QUESTIONS
The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.
Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
−2/3, −6, −54, ...
Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.
If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.
If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that a, b, c and d are in G.P.
If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].
The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.
Evaluate the following:
\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]
Find the sum :
\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]
The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.
If a, b, c are in G.P., prove that:
(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.
If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)
If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.
If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.
If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.
If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is
If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is
In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is
Mark the correct alternative in the following question:
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to
Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1
The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz
The numbers x − 6, 2x and x2 are in G.P. Find x
For a G.P. if a = 2, r = 3, Sn = 242 find n
For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/2, 1/4, 1/8, 1/16,...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`
Express the following recurring decimal as a rational number:
`0.bar(7)`
Express the following recurring decimal as a rational number:
`2.3bar(5)`
If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term
Find : `sum_("r" = 1)^oo (-1/3)^"r"`
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares
Answer the following:
For a G.P. if t2 = 7, t4 = 1575 find a
Answer the following:
Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.
Answer the following:
If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0
If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.