हिंदी

If the Fifth Term of a G.P. is 2, Then Write the Product of Its 9 Terms. - Mathematics

Advertisements
Advertisements

प्रश्न

If the fifth term of a G.P. is 2, then write the product of its 9 terms.

उत्तर

Here, a5 = 2 

\[\Rightarrow a r^4 = 2\]

Product of the nine terms, i.e.

\[a, ar, a r^2 , a r^3 , a r^4 , a r^5 , a r^6 , a r^7 \text { and } a r^8\]

\[\left( a \times a r^8 \right)\left( ar \times a r^7 \right)\left( a r^2 \times a r^6 \right)\left( a r^3 \times a r^5 \right)\left( a r^4 \right) = \left( a r^4 \right)^9 \]

\[ \because a r^4 = 2\]

\[\text { Required product } = 2^9 = 512\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.7 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.7 | Q 1 | पृष्ठ ५६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Which term of the following sequence: 

`2, 2sqrt2, 4,.... is 128`


Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.


Insert two numbers between 3 and 81 so that the resulting sequence is G.P.


If a, b, c are in A.P,; b, c, d are in G.P and ` 1/c, 1/d,1/e` are in A.P. prove that a, c, e are in G.P.

 

Show that one of the following progression is a G.P. Also, find the common ratio in case:

\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]


Which term of the G.P. :

\[2, 2\sqrt{2}, 4, . . .\text {  is }128 ?\]


Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?

 

The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.


Find the sum of the following geometric series:

x3, x5, x7, ... to n terms


Find the sum of the following geometric series:

\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text {  to n terms }\]


Evaluate the following:

\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]


How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\]  ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?


If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.


Let an be the nth term of the G.P. of positive numbers.

Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.


Find the sum of the following serie to infinity:

`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`


Three numbers are in A.P. and their sum is 15. If 1, 3, 9 be added to them respectively, they form a G.P. Find the numbers.


If a, b, c, d are in G.P., prove that:

(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.


If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.


If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.


If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.

  

Find the geometric means of the following pairs of number:

2 and 8


If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.


If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.

 

 

 


In a G.P. of even number of terms, the sum of all terms is five times the sum of the odd terms. The common ratio of the G.P. is 


Check whether the following sequence is G.P. If so, write tn.

1, –5, 25, –125 …


For the G.P. if a = `7/243`, r = 3 find t6.


Which term of the G.P. 5, 25, 125, 625, … is 510?


Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1


Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.


For the following G.P.s, find Sn

0.7, 0.07, 0.007, .....


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`2, 4/3, 8/9, 16/27, ...`


If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term


Find : `sum_("r" = 1)^oo (-1/3)^"r"`


Answer the following:

For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.


In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.


The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×