हिंदी

If a and B Are the Roots of X2 − 3x + P = 0 and C, D Are the Roots X2 − 12x + Q = 0, Where A, B, C, D Form a G.P. Prove that (Q + P) : (Q − P) = 17 : 15. - Mathematics

Advertisements
Advertisements

प्रश्न

If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.

उत्तर

We have,
a +b = 3, ab = p, c + d =12 and cd = q
a, b, c and d form a G.P.
∴ First term = a,  b = ar, c = ar2 and d = ar3
Then, we have
a + b = 3  and c + d = 12

\[\Rightarrow a + ar = 3 \]

\[ \Rightarrow a( 1 + r ) = 3 . . . \left( i \right)\]

\[\text { Similarly, } a r^2 (1 + r) = 12 . . . \left( ii \right)\]

\[ \Rightarrow \frac{a r^2 \left( 1 + r \right)}{a\left( 1 + r \right)} = \frac{12}{3}\]

\[ \Rightarrow r^2 = 4 \]

\[ \Rightarrow r = 2\]

\[ \therefore a \left( 1 + r \right) = 3 \]

\[ \Rightarrow a = 1\]

\[\text { Now }, p = ab \]

\[ \Rightarrow p = a \times ar = 2\]

\[\text { And, } q = cd \]

\[ \Rightarrow q = a r^2 \times a r^3 = 2^5 = 32\]

\[ \therefore \frac{q + p}{q - p} = \frac{32 + 2}{32 - 2} = \frac{34}{30} = \frac{17}{15}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.3 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.3 | Q 16 | पृष्ठ २८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Which term of the following sequence:

`1/3, 1/9, 1/27`, ...., is `1/19683`?


Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.


If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]


Which term of the progression 0.004, 0.02, 0.1, ... is 12.5?


If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.


In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.


Find the sum of the following geometric progression:

1, −1/2, 1/4, −1/8, ... to 9 terms;


Find the sum of the following geometric series:

\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8  terms };\]


Find the sum of the following geometric series:

(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;


Evaluate the following:

\[\sum^{11}_{n = 1} (2 + 3^n )\]


Evaluate the following:

\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]


The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.


Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.


If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively

\[\frac{2S S_1}{S^2 + S_1}\text {  and } \frac{S^2 - S_1}{S^2 + S_1}\]


If a, b, c, d are in G.P., prove that:

\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]


If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.


If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.


The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is 


In a G.P. of even number of terms, the sum of all terms is five times the sum of the odd terms. The common ratio of the G.P. is 


For a G.P. if S5 = 1023 , r = 4, Find a


For a G.P. If t4 = 16, t9 = 512, find S10


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`1/2, 1/4, 1/8, 1/16,...`


If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.


Find : `sum_("r" = 1)^oo 4(0.5)^"r"`


Find : `sum_("r" = 1)^oo (-1/3)^"r"`


Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.


Answer the following:

If for a G.P. t3 = `1/3`, t6 = `1/81` find r


Answer the following:

If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0


Answer the following:

If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.


In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.


If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1


The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm3 and the total surface area is 252cm2. The length of the longest edge is ______.


Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.


The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.


If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.


If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×