Advertisements
Advertisements
प्रश्न
If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.
उत्तर
Let a be the first term, r be the common ratio and S be the sum to infinity of the G.P.
Then S = `"a"/(1 - "r")`, where S = `96/17` and a = 6
∴ `96/17 = 6/(1 - r)`
∴ 1 – r × 96 = 6 × 17
∴ 1 – r = `(6 xx 17)/96`
∴ 1 – r = `17/16`
∴ 16 − 16r = 17
∴ 16r = 16 − 17
r = `-1/16`
Hence, the common ratio = `-1/16`.
APPEARS IN
संबंधित प्रश्न
Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`
Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).
Given a G.P. with a = 729 and 7th term 64, determine S7.
If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.
If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
4, −2, 1, −1/2, ...
Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...
Find :
the 10th term of the G.P.
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]
Which term of the G.P. :
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]
The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.
The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is \[87\frac{1}{2}\] . Find them.
The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.
The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.
Find the sum of the following series:
7 + 77 + 777 + ... to n terms;
Find the sum of the following series:
0.5 + 0.55 + 0.555 + ... to n terms.
How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?
Let an be the nth term of the G.P. of positive numbers.
Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.
Express the recurring decimal 0.125125125 ... as a rational number.
Find the rational numbers having the following decimal expansion:
\[0 . \overline3\]
If a, b, c, d are in G.P., prove that:
\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]
Find the geometric means of the following pairs of number:
a3b and ab3
The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .
If the first term of a G.P. a1, a2, a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is
The value of 91/3 . 91/9 . 91/27 ... upto inf, is
If A be one A.M. and p, q be two G.M.'s between two numbers, then 2 A is equal to
Check whether the following sequence is G.P. If so, write tn.
1, –5, 25, –125 …
Check whether the following sequence is G.P. If so, write tn.
`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...
Which term of the G.P. 5, 25, 125, 625, … is 510?
Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.
The numbers x − 6, 2x and x2 are in G.P. Find 1st term
For the following G.P.s, find Sn
0.7, 0.07, 0.007, .....
For a G.P. If t3 = 20 , t6 = 160 , find S7
For a G.P. If t4 = 16, t9 = 512, find S10
For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.
Answer the following:
In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term
Answer the following:
For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.
The third term of G.P. is 4. The product of its first 5 terms is ______.
If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.