Advertisements
Advertisements
प्रश्न
Find the rational numbers having the following decimal expansion:
\[0 . \overline3\]
उत्तर
\[0 . \overline3\]
\[\text { Let } S = 0 . \overline3\]
\[ \Rightarrow S = 0 . 3 + 0 . 03 + 0 . 003 + 0 . 0003 + 0 . 00003 + . . . \infty \]
\[ \Rightarrow S = 0 . 3\left( 1 + {10}^{- 1} + {10}^{- 2} + {10}^{- 3} + {10}^{- 4} + . . . \infty \right)\]
\[\text { S is a geometric series with the first term, a, being 1 and the common ratio, r, being } {10}^{- 1} . \]
\[ \therefore S = \frac{1}{1 - r}\]
\[ \Rightarrow S = 0 . 3\left( \frac{1}{1 - {10}^{- 1}} \right)\]
\[ \Rightarrow S = \frac{3}{9} = \frac{1}{3}\]
APPEARS IN
संबंधित प्रश्न
Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.
Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…
If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.
Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.
If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.
The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
4, −2, 1, −1/2, ...
Find :
nth term of the G.P.
\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]
Which term of the G.P. :
\[2, 2\sqrt{2}, 4, . . .\text { is }128 ?\]
Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?
If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.
If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].
The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.
Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.
Find the rational numbers having the following decimal expansion:
\[0 .\overline {231 }\]
The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.
If a, b, c, d are in G.P., prove that:
(a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2
If a, b, c are in G.P., then prove that:
If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.
Insert 6 geometric means between 27 and \[\frac{1}{81}\] .
If logxa, ax/2 and logb x are in G.P., then write the value of x.
If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to
If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is
In a G.P. of even number of terms, the sum of all terms is five times the sum of the odd terms. The common ratio of the G.P. is
Check whether the following sequence is G.P. If so, write tn.
3, 4, 5, 6, …
The numbers x − 6, 2x and x2 are in G.P. Find nth term
For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r
If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term
Select the correct answer from the given alternative.
Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)
Answer the following:
For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.
Answer the following:
If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q
If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c
If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`
If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.
For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.
The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.