Advertisements
Advertisements
प्रश्न
Find :
nth term of the G.P.
\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]
उत्तर
Here,
\[\text { First term, } a = \sqrt{3}\]
\[\text { Common ratio, } r = \frac{a_2}{a_1} = \frac{\frac{1}{\sqrt{3}}}{\sqrt{3}} = \frac{1}{3}\]
\[ \therefore \text { nth term } = a_n = a r^{(n - 1)} = \sqrt{3} \left( \frac{1}{3} \right)^{n - 1} \]
\[\text { Thus, the nth term of the given GP is } \sqrt{3} \left( \frac{1}{3} \right)^{n - 1} .\]
APPEARS IN
संबंधित प्रश्न
Evaluate `sum_(k=1)^11 (2+3^k )`
The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.
If a, b, c are in A.P,; b, c, d are in G.P and ` 1/c, 1/d,1/e` are in A.P. prove that a, c, e are in G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...
Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.
Find :
the 8th term of the G.P. 0.3, 0.06, 0.012, ...
Which term of the G.P. :
\[2, 2\sqrt{2}, 4, . . .\text { is }128 ?\]
The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.
Find the sum of the following geometric progression:
4, 2, 1, 1/2 ... to 10 terms.
Find the sum of the following geometric series:
(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;
Find the sum of the following geometric series:
\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]
Find the sum of the following serie:
5 + 55 + 555 + ... to n terms;
Find the sum :
\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]
If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).
Find the sum of the following serie to infinity:
\[1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \frac{1}{3^4} + . . . \infty\]
Find the sum of the following series to infinity:
10 − 9 + 8.1 − 7.29 + ... ∞
If a, b, c are in G.P., prove that:
\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]
If a, b, c, d are in G.P., prove that:
(a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2
If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.
If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.
If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is
If a, b, c are in G.P. and x, y are AM's between a, b and b,c respectively, then
If p, q be two A.M.'s and G be one G.M. between two numbers, then G2 =
Let x be the A.M. and y, z be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\] is equal to
Check whether the following sequence is G.P. If so, write tn.
`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...
Check whether the following sequence is G.P. If so, write tn.
3, 4, 5, 6, …
Which term of the G.P. 5, 25, 125, 625, … is 510?
The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz
For the following G.P.s, find Sn.
`sqrt(5)`, −5, `5sqrt(5)`, −25, ...
Express the following recurring decimal as a rational number:
`0.bar(7)`
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares
Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.
Answer the following:
Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`
Answer the following:
If for a G.P. t3 = `1/3`, t6 = `1/81` find r
The third term of G.P. is 4. The product of its first 5 terms is ______.
The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.