हिंदी

Find : Nth Term of the G.P. √ 3 , 1 √ 3 , 1 3 √ 3 , . . . - Mathematics

Advertisements
Advertisements

प्रश्न

Find : 

nth term of the G.P.

\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]

उत्तर

Here,

\[\text { First term, } a = \sqrt{3}\]

\[\text { Common ratio, } r = \frac{a_2}{a_1} = \frac{\frac{1}{\sqrt{3}}}{\sqrt{3}} = \frac{1}{3}\]

\[ \therefore \text { nth term } = a_n = a r^{(n - 1)} = \sqrt{3} \left( \frac{1}{3} \right)^{n - 1} \]

\[\text { Thus, the nth term of the given GP is } \sqrt{3} \left( \frac{1}{3} \right)^{n - 1} .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.1 | Q 3.5 | पृष्ठ १०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Evaluate `sum_(k=1)^11 (2+3^k )`


The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.


If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.


If a, b, c are in A.P,; b, c, d are in G.P and ` 1/c, 1/d,1/e` are in A.P. prove that a, c, e are in G.P.

 

Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...


Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.


Find :

the 8th term of the G.P. 0.3, 0.06, 0.012, ...


Which term of the G.P. :

\[2, 2\sqrt{2}, 4, . . .\text {  is }128 ?\]


The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.


Find the sum of the following geometric progression:

4, 2, 1, 1/2 ... to 10 terms.


Find the sum of the following geometric series:

(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;


Find the sum of the following geometric series:

\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]


Find the sum of the following serie:

5 + 55 + 555 + ... to n terms;


Find the sum :

\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]


If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).


Find the sum of the following serie to infinity:

\[1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \frac{1}{3^4} + . . . \infty\]


Find the sum of the following series to infinity:

10 − 9 + 8.1 − 7.29 + ... ∞


If a, b, c are in G.P., prove that:

\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]


If a, b, c, d are in G.P., prove that:

 (a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2


If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.


If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.


If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is


If abc are in G.P. and xy are AM's between ab and b,c respectively, then 


If pq be two A.M.'s and G be one G.M. between two numbers, then G2


Let x be the A.M. and yz be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\]  is equal to 


Check whether the following sequence is G.P. If so, write tn.

`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...


Check whether the following sequence is G.P. If so, write tn.

3, 4, 5, 6, …


Which term of the G.P. 5, 25, 125, 625, … is 510?


The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz


For the following G.P.s, find Sn.

`sqrt(5)`, −5, `5sqrt(5)`, −25, ...


Express the following recurring decimal as a rational number:

`0.bar(7)`


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares


Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.


Answer the following:

Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`


Answer the following:

If for a G.P. t3 = `1/3`, t6 = `1/81` find r


The third term of G.P. is 4. The product of its first 5 terms is ______.


The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×