हिंदी

If P, Q Be Two A.M.'S and G Be One G.M. Between Two Numbers, Then G2 = - Mathematics

Advertisements
Advertisements

प्रश्न

If pq be two A.M.'s and G be one G.M. between two numbers, then G2

विकल्प

  • (a) (2p − q) (p −  2q)

  • (b) (2p − q) (2q − p)

  • (c) (2p − q) (p + 2q)

  • (d) none of these

MCQ

उत्तर

(a) (2p − q) (p − 2q

\[\text{ Let the two numbers be a and b } . \]
\[\text{ a, p, q and b are in A . P } . \]
\[ \therefore p - a = q - p = b - q \]
\[ \Rightarrow p - a = q - p \text{ and } q - p = b - q\]
\[ \Rightarrow a = 2p - q \text{ and } b = 2q - p (i)\]
\[\text{ Also, a, G and b are in G . P }. \]
\[ \therefore G^2 = ab\]
\[ \Rightarrow G^2 = \left( 2p - q \right)\left( 2q - p \right)\] 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.8 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.8 | Q 16 | पृष्ठ ५८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Which term of the following sequence:

`1/3, 1/9, 1/27`, ...., is `1/19683`?


Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…


Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).


Insert two numbers between 3 and 81 so that the resulting sequence is G.P.


Which term of the G.P. :

\[2, 2\sqrt{2}, 4, . . .\text {  is }128 ?\]


The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.


If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.


The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.

 

Find the sum of the following geometric series:

1, −a, a2, −a3, ....to n terms (a ≠ 1)


Evaluate the following:

\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]


How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?


The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].


Find the sum of the following serie to infinity:

8 +  \[4\sqrt{2}\] + 4 + ... ∞


Find the sum of the following serie to infinity:

`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`


The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.


If a, b, c, d are in G.P., prove that:

(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.


If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.


If pth, qth and rth terms of an A.P. and G.P. are both a, b and c respectively, show that \[a^{b - c} b^{c - a} c^{a - b} = 1\]


Insert 5 geometric means between 16 and \[\frac{1}{4}\] .


Find the geometric means of the following pairs of number:

2 and 8


Find the geometric means of the following pairs of number:

−8 and −2


If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.


Write the product of n geometric means between two numbers a and b

 


If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.


If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is


Check whether the following sequence is G.P. If so, write tn.

2, 6, 18, 54, …


Check whether the following sequence is G.P. If so, write tn.

3, 4, 5, 6, …


Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.


For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r


For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.


If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]


Find : `sum_("r" = 1)^oo 4(0.5)^"r"`


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares


Find GM of two positive numbers whose A.M. and H.M. are 75 and 48


If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.


Answer the following:

Find three numbers in G.P. such that their sum is 35 and their product is 1000


Answer the following:

Find `sum_("r" = 1)^"n" (2/3)^"r"`


At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.


The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×