हिंदी

Answer the following: Find ∑r=1n(23)r - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

Find `sum_("r" = 1)^"n" (2/3)^"r"`

योग

उत्तर

`sum_("r" = 1)^"n" (2/3)^"r" = 2/3 + (2/3)^2 + (2/3)^3 + ... + (2/3)^"n"`

The terms `2/3, (2/3)^2, (2/3)^3` are in G.P.

∴ a = `2/3`, r = `2/3`

∴ `sum_("r" = 1)^"n" (2/3)^"r" = (2/3[1 - (2/3)^"n"])/(1 - 2/3)`

∴ `sum_("r" = 1)^"n" (2/3)^"r" = 2[1 - (2/3)^"n"]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Sequences and Series - Miscellaneous Exercise 2.2 [पृष्ठ ४२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 2 Sequences and Series
Miscellaneous Exercise 2.2 | Q II. (23) | पृष्ठ ४२

संबंधित प्रश्न

For what values of x, the numbers  `-2/7, x, -7/2` are in G.P?


Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).


If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.


If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.


Which term of the G.P. :

\[2, 2\sqrt{2}, 4, . . .\text {  is }128 ?\]


Which term of the G.P. :

\[\sqrt{3}, 3, 3\sqrt{3}, . . . \text { is } 729 ?\]


Find the sum of the following geometric series:

(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;


Evaluate the following:

\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]


Find the sum of the following series:

9 + 99 + 999 + ... to n terms;


Find the sum of the following series:

0.6 + 0.66 + 0.666 + .... to n terms


Find the sum of the following serie to infinity:

\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]


If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.


Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.


Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.


If a, b, c are in G.P., prove that:

\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]


If a, b, c are in G.P., prove that:

\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]


If a, b, c, d are in G.P., prove that:

 (a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2


If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.


Insert 6 geometric means between 27 and  \[\frac{1}{81}\] .


If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]


If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is 


Check whether the following sequence is G.P. If so, write tn.

7, 14, 21, 28, …


Which term of the G.P. 5, 25, 125, 625, … is 510?


If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio


The numbers x − 6, 2x and x2 are in G.P. Find nth term


For the following G.P.s, find Sn

3, 6, 12, 24, ...


For the following G.P.s, find Sn.

`sqrt(5)`, −5, `5sqrt(5)`, −25, ...


Find the sum to n terms of the sequence.

0.2, 0.02, 0.002, ...


Find: `sum_("r" = 1)^10(3 xx 2^"r")`


If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]


Answer the following:

For a G.P. if t2 = 7, t4 = 1575 find a


Answer the following:

If for a G.P. t3 = `1/3`, t6 = `1/81` find r


Answer the following:

If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q


Answer the following:

If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.


The third term of a G.P. is 4, the product of the first five terms is ______.


Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.


For an increasing G.P. a1, a2 , a3 ........., an, if a6 = 4a4, a9 – a7 = 192, then the value of `sum_(i = 1)^∞ 1/a_i` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×