हिंदी

Find: ∑r=110(3×2r) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find: `sum_("r" = 1)^10(3 xx 2^"r")`

योग

उत्तर

`sum_("r" = 1)^10(3 xx 2^"r") = 3 sum_("r"=1)^10 2"r"`

= 3(2 + 22 + 23 + ... + 210)

Here, 2, 22, 23, ..., 210 are in G.P. with a = 2, r = 2

∴ `sum_("r" = 1)^10(3 xx 2^"r") = 3[(2(2^10 - 1))/(2 -1)]` ....... `[because "S"_"n" = ("a"("r"^"n" -1))/("r" -1)]`

= 6(1024 – 1)

= 6(1023) 

= 6138

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Sequences and Series - Exercise 2.2 [पृष्ठ ३२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 2 Sequences and Series
Exercise 2.2 | Q 11. (i) | पृष्ठ ३२

संबंधित प्रश्न

For what values of x, the numbers  `-2/7, x, -7/2` are in G.P?


If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

4, −2, 1, −1/2, ...


Find :

the 8th term of the G.P. 0.3, 0.06, 0.012, ...


Find : 

nth term of the G.P.

\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]


If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that abc and d are in G.P.


The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is \[87\frac{1}{2}\] . Find them.


Find the sum of the following geometric series:

`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;


Find the sum of the following geometric series:

\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text {  to n terms }\]


Evaluate the following:

\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]


The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.


If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.


Let an be the nth term of the G.P. of positive numbers.

Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.


Express the recurring decimal 0.125125125 ... as a rational number.


Find the rational numbers having the following decimal expansion: 

\[0 .\overline {231 }\]


Find the rational numbers having the following decimal expansion: 

\[0 . 6\overline8\]


If a, b, c are in G.P., prove that:

\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]


If a, b, c, d are in G.P., prove that:

(b + c) (b + d) = (c + a) (c + d)


If a, b, c are in G.P., prove that the following is also in G.P.:

a2 + b2, ab + bc, b2 + c2


If a, b, c, d are in G.P., prove that:

(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.


If a, b, c, d are in G.P., prove that:

\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]


If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.


If A1, A2 be two AM's and G1G2 be two GM's between and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]


If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is 


The nth term of a G.P. is 128 and the sum of its n terms  is 225. If its common ratio is 2, then its first term is


If abc are in G.P. and xy are AM's between ab and b,c respectively, then 


Check whether the following sequence is G.P. If so, write tn.

3, 4, 5, 6, …


Check whether the following sequence is G.P. If so, write tn.

7, 14, 21, 28, …


For the following G.P.s, find Sn.

`sqrt(5)`, −5, `5sqrt(5)`, −25, ...


If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`-3, 1, (-1)/3, 1/9, ...`


Find : `sum_("r" = 1)^oo 4(0.5)^"r"`


Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"` 


Answer the following:

For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r


Answer the following:

Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...


Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×