हिंदी

Find rr∑r=0∞(-8)(-12)r - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"` 

योग

उत्तर

`sum_("r" = 0)^oo (-8)(-1/2)^"r" = -8 sum_("r" = 1)^oo (-1/2)^"r"`

= `-8[(-1/2) + (-1/2)^2 + (-1/2)^3 + ...]`   ...(1)

The terms `(-1/2), (-1/2)^2, (-1/2)^3  ...` are in G.P. with a = `-1/2`, r = `-1/2`.

Since |r| = `|-1/2| = 1/2 < 1`, the sum to infinity of this G.P. exist and

S = `"a"/(1 - "r")`

= `((-1/2))/(1 - (-1/2))`

= `-1/2 xx 2/3`

= `(-1)/3`

∴ from (1),

`sum_("r" = 1)^oo (-8)(-1/2)^"r" = -8(-1/3) = 8/3`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Sequences and Series - Exercise 2.3 [पृष्ठ ३४]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 2 Sequences and Series
Exercise 2.3 | Q 6. (iii) | पृष्ठ ३४

संबंधित प्रश्न

Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`


Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…


The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.


If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.


If a, b, c are in A.P,; b, c, d are in G.P and ` 1/c, 1/d,1/e` are in A.P. prove that a, c, e are in G.P.

 

Show that one of the following progression is a G.P. Also, find the common ratio in case:

4, −2, 1, −1/2, ...


Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.


Find the 4th term from the end of the G.P.

\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]


The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.


The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.


Find the sum of the following geometric series:

\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]


Evaluate the following:

\[\sum^{11}_{n = 1} (2 + 3^n )\]


How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?


The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.


Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.


If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.


If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.


If pth, qth and rth terms of an A.P. and G.P. are both a, b and c respectively, show that \[a^{b - c} b^{c - a} c^{a - b} = 1\]


If logxa, ax/2 and logb x are in G.P., then write the value of x.


If pq be two A.M.'s and G be one G.M. between two numbers, then G2


The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to 


Check whether the following sequence is G.P. If so, write tn.

1, –5, 25, –125 …


The numbers 3, x, and x + 6 form are in G.P. Find 20th term.


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.


For the following G.P.s, find Sn.

`sqrt(5)`, −5, `5sqrt(5)`, −25, ...


For a G.P. a = 2, r = `-2/3`, find S6


If S, P, R are the sum, product, and sum of the reciprocals of n terms of a G.P. respectively, then verify that `["S"/"R"]^"n"` = P


If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term


Find : `sum_("r" = 1)^oo 4(0.5)^"r"`


Select the correct answer from the given alternative.

The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is –


Select the correct answer from the given alternative.

Which term of the geometric progression 1, 2, 4, 8, ... is 2048


Answer the following:

Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.


Answer the following:

If for a G.P. t3 = `1/3`, t6 = `1/81` find r


Answer the following:

Find `sum_("r" = 1)^"n" (2/3)^"r"`


At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.


Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.


For an increasing G.P. a1, a2 , a3 ........., an, if a6 = 4a4, a9 – a7 = 192, then the value of `sum_(i = 1)^∞ 1/a_i` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×