हिंदी

Check whether the following sequence is G.P. If so, write tn. 1, –5, 25, –125 … - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Check whether the following sequence is G.P. If so, write tn.

1, –5, 25, –125 …

योग

उत्तर

Here, t1 = 1, t2 = –5, t3 = 25, t4 = –125, ...

∴ `"t"_2/"t"_1 = (-5)/1` = – 5, `"t"_3/"t"_2 = 25/(-5)` = – 5, `"t"_4/"t"_3 = (-125)/25` = – 5

Since the ratio of any two consecutive terms is a constant, the given sequence is a GP.

Here, a = 1, r = – 5

∴ tn = arn–1 = 1(– 5)n–1

= (– 5)n–1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Sequences and Series - Exercise 2.1 [पृष्ठ २७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 2 Sequences and Series
Exercise 2.1 | Q 1. (ii) | पृष्ठ २७

संबंधित प्रश्न

If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.


Find the sum to n terms of the sequence, 8, 88, 888, 8888… .


Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`


Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.


If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.


Insert two numbers between 3 and 81 so that the resulting sequence is G.P.


Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...


Find:
the ninth term of the G.P. 1, 4, 16, 64, ...


If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.


If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.


The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.


Find the sum of the following geometric progression:

1, 3, 9, 27, ... to 8 terms;


Find the sum of the following geometric series:

\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]


Evaluate the following:

\[\sum^{11}_{n = 1} (2 + 3^n )\]


Evaluate the following:

\[\sum^{10}_{n = 2} 4^n\]


Find the sum of the following series:

9 + 99 + 999 + ... to n terms;


Find the sum of the following series:

0.5 + 0.55 + 0.555 + ... to n terms.


Let an be the nth term of the G.P. of positive numbers.

Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.


Find the sum of the following series to infinity:

10 − 9 + 8.1 − 7.29 + ... ∞


If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.


If a, b, c are in G.P., prove that:

\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]


If a, b, c, d are in G.P., prove that:

\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]


If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.


If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.


Find the geometric means of the following pairs of number:

−8 and −2


If the fifth term of a G.P. is 2, then write the product of its 9 terms.


If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.


If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.


For a G.P. If t3 = 20 , t6 = 160 , find S7


For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.


Select the correct answer from the given alternative.

Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –


Answer the following:

For a G.P. if t2 = 7, t4 = 1575 find a


Answer the following:

If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0


If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.


The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm3 and the total surface area is 252cm2. The length of the longest edge is ______.


If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×