हिंदी

If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P. - Mathematics

Advertisements
Advertisements

प्रश्न

If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.

योग

उत्तर

Let r be the common ratio of the given G.P.

Then `b/a = c/b = d/c` = r

⇒ b = ar, c = br = ar2, d = cr = ar3

Now, a2 – b2 = a2 – a2r2

= a2(1 – r2)

b2 – c2 = a2r2 – a2r4

= a2r2 (1 – r2)

And c2 – d2 = a2r4 – a2r6

= a2r4(1 – r2)

Therefore, `(b^2 - c^2)/(a^2 - b^2) = (c^2 - d^2)/(b^2 - c^2)` = r2

Hence, a2 – b2, b2 – c2, c2 – d2 are in G.P.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Sequences and Series - Solved Examples [पृष्ठ १५३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 9 Sequences and Series
Solved Examples | Q 8 | पृष्ठ १५३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Which term of the following sequence:

`1/3, 1/9, 1/27`, ...., is `1/19683`?


If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`


if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.


If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.


Find the 4th term from the end of the G.P.

\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]


The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.


If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].


Find three numbers in G.P. whose sum is 38 and their product is 1728.


The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.


Evaluate the following:

\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]


How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?


How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\]  ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?


If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).


Find the sum of the following serie to infinity:

\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]


Express the recurring decimal 0.125125125 ... as a rational number.


The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.


Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.


If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.


For the G.P. if r = − 3 and t6 = 1701, find a.


The numbers x − 6, 2x and x2 are in G.P. Find 1st term


For a G.P. If t4 = 16, t9 = 512, find S10


Select the correct answer from the given alternative.

The common ratio for the G.P. 0.12, 0.24, 0.48, is –


Answer the following:

If for a G.P. first term is (27)2 and seventh term is (8)2, find S8 


In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.


The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.


If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.


If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×