हिंदी

For the G.P. if r = − 3 and t6 = 1701, find a. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

For the G.P. if r = − 3 and t6 = 1701, find a.

योग

उत्तर

tn = arn−1, where r = − 3

∴ t6 = a(−3)6 −1 = 1701

∴ a(− 3)5 = 1701

∴ − 243a = 1701

∴ a = `(1701)/(-243)`

= − 7

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Sequences and Series - Exercise 2.1 [पृष्ठ २७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 2 Sequences and Series
Exercise 2.1 | Q 2. (iii) | पृष्ठ २७

संबंधित प्रश्न

Insert two numbers between 3 and 81 so that the resulting sequence is G.P.


If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

−2/3, −6, −54, ...


The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.


The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.


Find the sum of the following geometric progression:

(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;


Evaluate the following:

\[\sum^{11}_{n = 1} (2 + 3^n )\]


Find the sum of the following series:

9 + 99 + 999 + ... to n terms;


If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.


How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?


If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.


Let an be the nth term of the G.P. of positive numbers.

Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.


Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.


Express the recurring decimal 0.125125125 ... as a rational number.


Find the rational numbers having the following decimal expansion: 

\[0 .\overline {231 }\]


The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.


If a, b, c are in G.P., prove that:

\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]


If a, b, c are in G.P., prove that the following is also in G.P.:

a2 + b2, ab + bc, b2 + c2


Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .


If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is 


Check whether the following sequence is G.P. If so, write tn.

1, –5, 25, –125 …


For the G.P. if r = `1/3`, a = 9 find t7


For the G.P. if a = `7/243`, r = 3 find t6.


For what values of x, the terms `4/3`, x, `4/27` are in G.P.?


A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.


For the following G.P.s, find Sn

3, 6, 12, 24, ...


For a G.P. if S5 = 1023 , r = 4, Find a


Find : `sum_("n" = 1)^oo 0.4^"n"`


Select the correct answer from the given alternative.

If common ratio of the G.P is 5, 5th term is 1875, the first term is -


Answer the following:

Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.


Answer the following:

Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`


If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c


The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.


The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.


If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×