हिंदी

If S1, S2, ..., Sn Are the Sums of N Terms of N G.P.'S Whose First Term is 1 in Each and Common Ratios Are 1, 2, 3, ..., N Respectively, Then Prove that S1 + S2 + 2s3 + 3s4 + ... (N − 1) Sn = - Mathematics

Advertisements
Advertisements

प्रश्न

If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.

उत्तर

Given:

\[ S_1 , S_2 , . . . , S_n\text {  are the sum of n terms of an G . P . whose first term is 1 in each case and the common ratios are } 1, 2, 3, . . . , n . \]

\[ \therefore S_1 = 1 + 1 + 1 + . . .\text {  n terms } = n . . . \left( 1 \right)\]

\[ S_2 = \frac{1\left( 2^n - 1 \right)}{2 - 1} = 2^n - 1 . . . \left( 2 \right)\]

\[ S_3 = \frac{1\left( 3^n - 1 \right)}{3 - 1} = \frac{3^n - 1}{2} . . . \left( 3 \right)\]

\[ S_4 = \frac{1\left( 4^n - 1 \right)}{4 - 1} = \frac{4^n - 1}{3} . . . \left( 4 \right)\]

\[ S_n = \frac{1\left( n^n - 1 \right)}{n - 1} = \frac{n^n - 1}{n - 1} . . . . . . . . . . . . \left( n \right)\]

\[\text { Now, LHS } = S_1 + S_2 + 2 S_3 + 3 S_4 + . . . + \left( n - 1 \right) S_n \]

\[ = n + 2^n - 1 + 3^n - 1 + 4^n - 1 + . . . + n^n - 1 \left[ \text { Using } \left( 1 \right), \left( 2 \right), \left( 3 \right), . . . , \left( n \right) \right]\]

\[ = n + \left( 2^n + 3^n + 4^n + . . . + n^n \right) - \left[ 1 + 1 + 1 + . . . + \left( n - 1 \right) \text { times } \right]\]

\[ = n + \left( 2^n + 3^n + 4^n + . . . + n^n \right) - \left( n - 1 \right)\]

\[ = n + \left( 2^n + 3^n + 4^n + . . . + n^n \right) - n + 1\]

\[ = 1 + 2^n + 3^n + 4^n + . . . + n^n \]

\[ = 1^n + 2^n + 3^n + 4^n + . . . + n^n \]

= RHS

Hence proved .

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.3 [पृष्ठ २९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.3 | Q 19 | पृष्ठ २९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.


Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).


Find the sum to n terms of the sequence, 8, 88, 888, 8888… .


The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.


If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].


Find three numbers in G.P. whose sum is 65 and whose product is 3375.


Find three numbers in G.P. whose sum is 38 and their product is 1728.


The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.


Find the sum of the following geometric progression:

4, 2, 1, 1/2 ... to 10 terms.


Find the sum of the following geometric series:

\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8  terms };\]


Find the sum of the following geometric series:

\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]


Evaluate the following:

\[\sum^{11}_{n = 1} (2 + 3^n )\]


If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.


How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?


Find the sum of the following series to infinity:

10 − 9 + 8.1 − 7.29 + ... ∞


The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.


Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.


The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.


If a, b, c are in G.P., then prove that:

\[\frac{a^2 + ab + b^2}{bc + ca + ab} = \frac{b + a}{c + b}\]

If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.


The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.


For the following G.P.s, find Sn

3, 6, 12, 24, ...


For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`2, 4/3, 8/9, 16/27, ...`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

9, 8.1, 7.29, ...


Express the following recurring decimal as a rational number:

`0.bar(7)`


Select the correct answer from the given alternative.

Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)


Answer the following:

For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.


Answer the following:

If for a G.P. first term is (27)2 and seventh term is (8)2, find S8 


Answer the following:

If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0


Answer the following:

If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.


Answer the following:

Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`


At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.


If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c


Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.


For an increasing G.P. a1, a2 , a3 ........., an, if a6 = 4a4, a9 – a7 = 192, then the value of `sum_(i = 1)^∞ 1/a_i` is ______.


Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×