Advertisements
Advertisements
प्रश्न
The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.
उत्तर
Let the first term be a and the common difference be r.
\[\therefore a_1 + a_2 = 5 \]
\[ \Rightarrow a + ar = 5 . . . \left( i \right)\]
\[\text { Also, } a_n = 3\left[ a_{n + 1} + a_{n + 2} + a_{n + 3} + . . . \infty \right] \forall n \in N\]
\[ \Rightarrow a r^{n - 1} = 3 \left[ a r^{n + 1} + a r^{n + 2} + a r^{n + 3} + . . . \infty \right]\]
\[ \Rightarrow a r^{n - 1} = \frac{3a r^n}{1 - r} \]
\[ \Rightarrow 1 - r = 3r\]
\[ \Rightarrow 4r = 1 \]
\[ \Rightarrow r = \frac{1}{4}\]
\[\text { Putting } r = \frac{1}{4} \text { in } \left( i \right): \]
\[a + \frac{a}{4} = 5\]
\[ \Rightarrow 5a = 20 \]
\[ \Rightarrow a = 4\]
\[\text { Thus, the G . P . is } 4, 1, \frac{1}{4}, \frac{1}{16}, . . . \infty . \]
APPEARS IN
संबंधित प्रश्न
Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`
Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio
The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]
Find :
the 12th term of the G.P.
\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]
Find :
the 10th term of the G.P.
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]
If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.
The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.
If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that a, b, c and d are in G.P.
The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.
Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.
Find the sum of the following geometric series:
(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;
How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?
How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\] ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?
Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.
Find the rational number whose decimal expansion is \[0 . 423\].
Find the rational numbers having the following decimal expansion:
\[3 . 5\overline 2\]
Find the rational numbers having the following decimal expansion:
\[0 . 6\overline8\]
The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.
If a, b, c, d are in G.P., prove that:
\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]
If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.
If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio
The numbers x − 6, 2x and x2 are in G.P. Find nth term
For the following G.P.s, find Sn
0.7, 0.07, 0.007, .....
For the following G.P.s, find Sn.
`sqrt(5)`, −5, `5sqrt(5)`, −25, ...
For a G.P. a = 2, r = `-2/3`, find S6
For a G.P. if a = 2, r = 3, Sn = 242 find n
Express the following recurring decimal as a rational number:
`2.bar(4)`
Find GM of two positive numbers whose A.M. and H.M. are 75 and 48
Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.
Select the correct answer from the given alternative.
The common ratio for the G.P. 0.12, 0.24, 0.48, is –
Select the correct answer from the given alternative.
If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?
Select the correct answer from the given alternative.
Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –
Answer the following:
Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.
Answer the following:
If for a G.P. first term is (27)2 and seventh term is (8)2, find S8
Answer the following:
Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.
If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.
In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.
If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`