हिंदी

Insert two numbers between 1 and −27 so that the resulting sequence is a G.P. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.

योग

उत्तर

Let the required numbers be G1 and G2.

∴ 1, G1, G2, −27 are in G.P.

∴ t1 = 1, t2 = G1, t3 = G2, t4 = −27

∴ t1 = a = 1

tn = arn−1

∴ t4 = (1)r4−1

∴ −27 = r3

∴ r3 = (− 3)3

∴ r = − 3

∴ G1 = t2 = ar = 1(−3) = −3

G2 = t3 = ar2 = 1(−3)2 = 9

∴ For resulting sequence to be G.P. we need to insert numbers −3 and 9.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Sequences and Series - Exercise 2.4 [पृष्ठ ३७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 2 Sequences and Series
Exercise 2.4 | Q 7 | पृष्ठ ३७

संबंधित प्रश्न

Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`


The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.


Which term of the following sequence:

`sqrt3, 3, 3sqrt3`, .... is 729?


Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`


If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.


Find :

the 8th term of the G.P. 0.3, 0.06, 0.012, ...


The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.


Find the sum of the following geometric progression:

4, 2, 1, 1/2 ... to 10 terms.


Evaluate the following:

\[\sum^{11}_{n = 1} (2 + 3^n )\]


How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?


Find the rational numbers having the following decimal expansion: 

\[0 . 6\overline8\]


The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.


Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.


The sum of three numbers a, b, c in A.P. is 18. If a and b are each increased by 4 and c is increased by 36, the new numbers form a G.P. Find a, b, c.


The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.


If a, b, c are in G.P., prove that the following is also in G.P.:

a2 + b2, ab + bc, b2 + c2


If a, b, c, d are in G.P., prove that:

(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.


If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)


If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.


If A1, A2 be two AM's and G1G2 be two GM's between and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]


If the first term of a G.P. a1a2a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is


In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is 


Mark the correct alternative in the following question: 

Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to 


For what values of x, the terms `4/3`, x, `4/27` are in G.P.?


Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.


If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.


A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?


For the following G.P.s, find Sn

0.7, 0.07, 0.007, .....


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`-3, 1, (-1)/3, 1/9, ...`


Express the following recurring decimal as a rational number:

`51.0bar(2)`


Select the correct answer from the given alternative.

The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is –


Select the correct answer from the given alternative.

If common ratio of the G.P is 5, 5th term is 1875, the first term is -


Answer the following:

For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r


Answer the following:

If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0


Answer the following:

If p, q, r, s are in G.P., show that (p2 + q2 + r2) (q2 + r2 + s2) = (pq + qr + rs)2   


Answer the following:

Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`


Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.


The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.


If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×