मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Insert two numbers between 1 and −27 so that the resulting sequence is a G.P. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.

बेरीज

उत्तर

Let the required numbers be G1 and G2.

∴ 1, G1, G2, −27 are in G.P.

∴ t1 = 1, t2 = G1, t3 = G2, t4 = −27

∴ t1 = a = 1

tn = arn−1

∴ t4 = (1)r4−1

∴ −27 = r3

∴ r3 = (− 3)3

∴ r = − 3

∴ G1 = t2 = ar = 1(−3) = −3

G2 = t3 = ar2 = 1(−3)2 = 9

∴ For resulting sequence to be G.P. we need to insert numbers −3 and 9.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Sequences and Series - Exercise 2.4 [पृष्ठ ३७]

APPEARS IN

संबंधित प्रश्‍न

Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`


The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.


The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.


If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.


The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.


Find :

the 12th term of the G.P.

\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]


Which term of the G.P. :

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]


The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.


Find the sum of the following geometric progression:

2, 6, 18, ... to 7 terms;


Find the sum of the following geometric series:

 0.15 + 0.015 + 0.0015 + ... to 8 terms;


Find the sum of the following geometric series:

(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;


The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.


If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).


Find the rational numbers having the following decimal expansion: 

\[0 . \overline3\]


If a, b, c are in G.P., prove that the following is also in G.P.:

a2, b2, c2


If a, b, c are in G.P., prove that the following is also in G.P.:

a2 + b2, ab + bc, b2 + c2


If a, b, c are in G.P., then prove that:

\[\frac{a^2 + ab + b^2}{bc + ca + ab} = \frac{b + a}{c + b}\]

If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.


If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.


If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is 


Check whether the following sequence is G.P. If so, write tn.

2, 6, 18, 54, …


For the G.P. if r = `1/3`, a = 9 find t7


Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.


Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1


The number of bacteria in a culture doubles every hour. If there were 50 bacteria originally in the culture, how many bacteria will be there at the end of 5thhour?


The numbers 3, x, and x + 6 form are in G.P. Find 20th term.


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.


For a G.P. if S5 = 1023 , r = 4, Find a


If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`1/2, 1/4, 1/8, 1/16,...`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

9, 8.1, 7.29, ...


Express the following recurring decimal as a rational number:

`2.3bar(5)`


Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"` 


Find GM of two positive numbers whose A.M. and H.M. are 75 and 48


Answer the following:

If p, q, r, s are in G.P., show that (p2 + q2 + r2) (q2 + r2 + s2) = (pq + qr + rs)2   


Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.


In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.


The third term of a G.P. is 4, the product of the first five terms is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×