मराठी

The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P. - Mathematics

Advertisements
Advertisements

प्रश्न

The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.

बेरीज

उत्तर

Let a and r be the first term and the common ratio of the G.P. respectively.

∴ a = 1

a3 = ar2 = r2

a5 = ar4 = r4

∴ r2 + r4 = 90

⇒ r4 + r2 – 90 = 0

= `r^2 = (-1 + sqrt(1 + 360))/2 = (-1± sqrt361)/2 =(-1 ± 19)/(2) = -10 or 9`

∴ r = ± 3        (Taking real roots)

Thus, the common ratio of the G.P. is ±3.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Sequences and Series - Miscellaneous Exercise [पृष्ठ १९९]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 9 Sequences and Series
Miscellaneous Exercise | Q 9 | पृष्ठ १९९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).


Evaluate `sum_(k=1)^11 (2+3^k )`


If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.


Find the 4th term from the end of the G.P.

\[\frac{2}{27}, \frac{2}{9}, \frac{2}{3}, . . . , 162\]

Which term of the G.P. :

\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]


If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that abc and d are in G.P.


If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].


The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is \[87\frac{1}{2}\] . Find them.


Find the sum of the following geometric progression:

4, 2, 1, 1/2 ... to 10 terms.


Find the sum of the following geometric series:

\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]


The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.


If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).


If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.


Find the rational numbers having the following decimal expansion: 

\[0 . \overline3\]


If a, b, c are in G.P., prove that:

a (b2 + c2) = c (a2 + b2)


If a, b, c are in G.P., prove that:

\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]


If a, b, c, d are in G.P., prove that:

(b + c) (b + d) = (c + a) (c + d)


If a, b, c are in G.P., prove that the following is also in G.P.:

a3, b3, c3


If a, b, c, d are in G.P., prove that:

(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.


If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.


If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.

  

If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.


The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .


The fractional value of 2.357 is 


If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is 


If abc are in G.P. and xy are AM's between ab and b,c respectively, then 


Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals 


Which term of the G.P. 5, 25, 125, 625, … is 510?


A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.


The numbers x − 6, 2x and x2 are in G.P. Find x


For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`1/2, 1/4, 1/8, 1/16,...`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`2, 4/3, 8/9, 16/27, ...`


Express the following recurring decimal as a rational number:

`51.0bar(2)`


Find GM of two positive numbers whose A.M. and H.M. are 75 and 48


Answer the following:

For a G.P. if t2 = 7, t4 = 1575 find a


Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×