Advertisements
Advertisements
प्रश्न
The numbers x − 6, 2x and x2 are in G.P. Find x
उत्तर
The numbers x − 6, 2x and x2 are in G.P.
∴ `(2x)/(x - 6) = x^2/(2x)`
∴ 4x2 = x2(x – 6)
∴ 4 = x – 6 ...[∵ x2 ≠ 0]
∴ x = 10
APPEARS IN
संबंधित प्रश्न
Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`
Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.
Evaluate `sum_(k=1)^11 (2+3^k )`
If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.
If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.
Which term of the G.P. :
\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]
The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.
In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.
The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].
How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.
Find the rational numbers having the following decimal expansion:
\[3 . 5\overline 2\]
The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.
Insert 5 geometric means between 16 and \[\frac{1}{4}\] .
Find the geometric means of the following pairs of number:
a3b and ab3
Find the geometric means of the following pairs of number:
−8 and −2
If the fifth term of a G.P. is 2, then write the product of its 9 terms.
If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.
The value of 91/3 . 91/9 . 91/27 ... upto inf, is
If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is
The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to
The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.
For a G.P. a = 2, r = `-2/3`, find S6
Find the sum to n terms of the sequence.
0.2, 0.02, 0.002, ...
For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.
Find: `sum_("r" = 1)^10 5 xx 3^"r"`
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares
Select the correct answer from the given alternative.
If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?
Select the correct answer from the given alternative.
If common ratio of the G.P is 5, 5th term is 1875, the first term is -
Answer the following:
For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r
Answer the following:
Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`
If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1
If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.
If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.
The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.
If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.