Advertisements
Advertisements
प्रश्न
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.
उत्तर
Let there be 2n terms in the given G.P. with the first term being a and the common ratio being r.
According to the question
Sum of all the terms = 5 (Sum of the terms occupying the odd places)
\[\Rightarrow a_1 + a_2 + . . . + a_{2n} = 5 \left( a_1 + a_3 + a_5 + . . . + a_{2n - 1} \right)\]
\[ \Rightarrow a + ar + . . . + a r^{2n - 1} = 5 \left( a + a r^2 + . . . + a r^{2n - 2} \right)\]
\[ \Rightarrow a\left( \frac{1 - r^{2n}}{1 - r} \right) = 5a\left\{ \frac{1 - \left( r^2 \right)^n}{1 - r^2} \right\} \]
\[ \Rightarrow 1 + r = 5 \]
\[ \therefore r = 4\]
APPEARS IN
संबंधित प्रश्न
If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.
Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that P2Rn = Sn
Find :
the 8th term of the G.P. 0.3, 0.06, 0.012, ...
Find :
nth term of the G.P.
\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]
The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is \[87\frac{1}{2}\] . Find them.
Evaluate the following:
\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]
How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?
How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?
Let an be the nth term of the G.P. of positive numbers.
Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.
Find the sum of the following serie to infinity:
8 + \[4\sqrt{2}\] + 4 + ... ∞
Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.
The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.
If a, b, c, d are in G.P., prove that:
(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.
If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.
If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.
Insert 5 geometric means between 16 and \[\frac{1}{4}\] .
If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.
If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.
If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to
If a, b, c are in G.P. and x, y are AM's between a, b and b,c respectively, then
If A be one A.M. and p, q be two G.M.'s between two numbers, then 2 A is equal to
Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.
The numbers 3, x, and x + 6 form are in G.P. Find x
The numbers x − 6, 2x and x2 are in G.P. Find 1st term
For the following G.P.s, find Sn
0.7, 0.07, 0.007, .....
Find the sum to n terms of the sequence.
0.2, 0.02, 0.002, ...
If S, P, R are the sum, product, and sum of the reciprocals of n terms of a G.P. respectively, then verify that `["S"/"R"]^"n"` = P2
The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]
Express the following recurring decimal as a rational number:
`51.0bar(2)`
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares
Select the correct answer from the given alternative.
Which term of the geometric progression 1, 2, 4, 8, ... is 2048
Select the correct answer from the given alternative.
If common ratio of the G.P is 5, 5th term is 1875, the first term is -
Select the correct answer from the given alternative.
Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)
Answer the following:
If for a G.P. first term is (27)2 and seventh term is (8)2, find S8
Answer the following:
Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`
The third term of a G.P. is 4, the product of the first five terms is ______.
The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.
Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______.