Advertisements
Advertisements
प्रश्न
Let an be the nth term of the G.P. of positive numbers.
Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.
उत्तर
Let a be the first term and r be the common ratio of the G.P.
\[\therefore \sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta\]
\[ \therefore a_2 + a_4 + . . . + a_{200} = \alpha \text { and } a_1 + a_3 + . . . + a_{199} = \beta\]
\[ \Rightarrow ar + a r^3 + . . . + a r^{199} = \alpha \text { and } a + a r^2 + . . . + a r^{198} = \beta\]
\[ \Rightarrow ar\left\{ \frac{1 - \left( r^2 \right)^{100}}{1 - r^2} \right\} = \alpha \text { and } a\left\{ \frac{1 - \left( r^2 \right)^{100}}{1 - r^2} \right\} = \beta\]
\[\text { Now, dividing } \alpha \text { by }\beta\]
\[\frac{\alpha}{\beta} = \frac{ar\left\{ \frac{1 - \left( r^2 \right)^{100}}{1 - r^2} \right\}}{a\left\{ \frac{1 - \left( r^2 \right)^{100}}{1 - r^2} \right\}} = \frac{ar}{r} = r\]
\[ \therefore r = \frac{\alpha}{\beta}\]
APPEARS IN
संबंधित प्रश्न
Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.
For what values of x, the numbers `-2/7, x, -7/2` are in G.P?
Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.
The sum of first three terms of a G.P. is `39/10` and their product is 1. Find the common ratio and the terms.
The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.
Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.
The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.
Find :
nth term of the G.P.
\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]
The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.
Find three numbers in G.P. whose sum is 65 and whose product is 3375.
Find the sum of the following geometric series:
x3, x5, x7, ... to n terms
The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.
Find the rational numbers having the following decimal expansion:
\[0 .\overline {231 }\]
The sum of three numbers a, b, c in A.P. is 18. If a and b are each increased by 4 and c is increased by 36, the new numbers form a G.P. Find a, b, c.
If a, b, c are in G.P., prove that the following is also in G.P.:
a2, b2, c2
If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.
If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.
If A1, A2 be two AM's and G1, G2 be two GM's between a and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]
If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.
If the first term of a G.P. a1, a2, a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is
If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]
Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals
Mark the correct alternative in the following question:
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to
For the G.P. if r = `1/3`, a = 9 find t7
For the following G.P.s, find Sn
0.7, 0.07, 0.007, .....
If S, P, R are the sum, product, and sum of the reciprocals of n terms of a G.P. respectively, then verify that `["S"/"R"]^"n"` = P2
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/2, 1/4, 1/8, 1/16,...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.
Answer the following:
For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.
Answer the following:
For a G.P. if t2 = 7, t4 = 1575 find a
If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c
For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.
Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.