मराठी

The Sum of Three Numbers A, B, C in A.P. is 18. If a and B Are Each Increased by 4 and C is Increased by 36, the New Numbers Form a G.P. Find A, B, C. - Mathematics

Advertisements
Advertisements

प्रश्न

The sum of three numbers a, b, c in A.P. is 18. If a and b are each increased by 4 and c is increased by 36, the new numbers form a G.P. Find a, b, c.

उत्तर

Let the first term of the A.P. be a and the common difference be d.
∴ a = a , b = a + d and c = a + 2d

\[a + b + c = 18\]

\[ \Rightarrow a + \left( a + d \right) + \left( a + 2d \right) = 18\]

\[ \Rightarrow 3a + 3d = 18 \]

\[ \Rightarrow a + d = 6 . . . . . . . (i)\]

\[\text { Now, according to the question, a + 4, a + d + 4 and a + 2d + 36 are in G . P .} \]

\[ \therefore \left( a + d + 4 \right)^2 = \left( a + 4 \right)\left( a + 2d + 36 \right)\]

\[ \Rightarrow \left( 6 - d + d + 4 \right)^2 = \left( 6 - d + 4 \right) \left( 6 - d + 2d + 36 \right) \]

\[ \Rightarrow \left( 10 \right)^2 = \left( 10 - d \right)\left( 42 + d \right)\]

\[ \Rightarrow 100 = 420 + 10d - 42d - d^2 \]

\[ \Rightarrow d^2 + 32d - 320 = 0\]

\[ \Rightarrow \left( d + 40 \right)\left( d - 8 \right) = 0\]

\[ \Rightarrow d = 8, - 40\]

\[\text { Now, putting d = 8, - 40 in equation (i), we get, a = - 2, 46, respectively .} \]

\[\text { For a = - 2 and d = 8, we have }: \]

\[ a = - 2 , b = 6 , c = 14\]

\[\text { And, for a = 46 and d = - 40, we have }: \]

\[ a = 46 , b = 6 , c = - 34\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Geometric Progression - Exercise 20.5 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 20 Geometric Progression
Exercise 20.5 | Q 6 | पृष्ठ ४५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Which term of the following sequence:

`1/3, 1/9, 1/27`, ...., is `1/19683`?


Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).


Evaluate `sum_(k=1)^11 (2+3^k )`


Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`


Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio


Find:

the 10th term of the G.P.

\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]

 


The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is \[87\frac{1}{2}\] . Find them.


The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.


Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.


Find the sum of the following geometric series:

\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8  terms };\]


The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.


The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.


If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).


Let an be the nth term of the G.P. of positive numbers.

Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.


Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.


Find the rational numbers having the following decimal expansion: 

\[0 . 6\overline8\]


If a, b, c are in G.P., prove that:

(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.


If a, b, c, d are in G.P., prove that:

 (a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2


If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.


If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.


If pth, qth and rth terms of an A.P. and G.P. are both a, b and c respectively, show that \[a^{b - c} b^{c - a} c^{a - b} = 1\]


Insert 6 geometric means between 27 and  \[\frac{1}{81}\] .


Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .


If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.


The value of 91/3 . 91/9 . 91/27 ... upto inf, is 


If A be one A.M. and pq be two G.M.'s between two numbers, then 2 A is equal to 


The two geometric means between the numbers 1 and 64 are 


In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is 


Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1


If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`


The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.


Find : `sum_("r" = 1)^oo 4(0.5)^"r"`


If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.


Answer the following:

For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.


Answer the following:

If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q


In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×