मराठी

Find the Rational Numbers Having the Following Decimal Expansion: 0 . 6 ¯¯¯ 8 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the rational numbers having the following decimal expansion: 

\[0 . 6\overline8\]

उत्तर

\[0 . 6\overline8\]

\[\text { Let } S = 0 . 6\overline8\]

\[ \Rightarrow S = 0 . 6 + 0 . 08 + 0 . 008 + 0 . 0008 + 0 . 00008 + . . . \infty \]

\[ \Rightarrow S = 0 . 6 + 0 . 08\left( 1 + {10}^{- 1} + {10}^{- 2} + {10}^{- 3} + . . . \infty \right)\]

\[\text { It is a G . P } . \]

\[ \therefore S = 0 . 6 + 0 . 08\left( \frac{1}{1 - {10}^{- 1}} \right)\]

\[ \Rightarrow S = 0 . 6 + \frac{0 . 8}{9}\]

\[ \Rightarrow S = \frac{6 . 2}{9}\]

\[ \Rightarrow S = \frac{62}{90} = \frac{31}{45}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Geometric Progression - Exercise 20.4 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 20 Geometric Progression
Exercise 20.4 | Q 8.4 | पृष्ठ ४०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.


Which term of the following sequence:

`sqrt3, 3, 3sqrt3`, .... is 729?


Find the value of n so that  `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.


If a, b, c are in A.P,; b, c, d are in G.P and ` 1/c, 1/d,1/e` are in A.P. prove that a, c, e are in G.P.

 

Which term of the G.P. :

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]


Which term of the G.P. :

\[\sqrt{3}, 3, 3\sqrt{3}, . . . \text { is } 729 ?\]


If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.


If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.


The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.


Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.


Find the sum of the following geometric series:

 0.15 + 0.015 + 0.0015 + ... to 8 terms;


Find the sum of the following geometric series:

\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text {  to n terms }\]


How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?


How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\]  ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?


The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.


If a, b, c are in G.P., prove that:

\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]


If a, b, c are in G.P., prove that:

\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]


If a, b, c, d are in G.P., prove that:

(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.


Find the geometric means of the following pairs of number:

a3b and ab3


If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.

 

 

 


Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals 


The two geometric means between the numbers 1 and 64 are 


If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio


Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1


The numbers 3, x, and x + 6 form are in G.P. Find 20th term.


For a G.P. if a = 2, r = 3, Sn = 242 find n


If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.


Find: `sum_("r" = 1)^10 5 xx 3^"r"`


If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

9, 8.1, 7.29, ...


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares


Select the correct answer from the given alternative.

If common ratio of the G.P is 5, 5th term is 1875, the first term is -


Answer the following:

For a G.P. if t2 = 7, t4 = 1575 find a


Answer the following:

If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.


If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1


For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.


For an increasing G.P. a1, a2 , a3 ........., an, if a6 = 4a4, a9 – a7 = 192, then the value of `sum_(i = 1)^∞ 1/a_i` is ______.


If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×