मराठी

Which term of the following sequence: 3,3,33, .... is 729? - Mathematics

Advertisements
Advertisements

प्रश्न

Which term of the following sequence:

`sqrt3, 3, 3sqrt3`, .... is 729?

बेरीज

उत्तर

The given sequence is `sqrt3, 3, 3sqrt3`,...

Here, a = `sqrt3` and r = `3/sqrt3 = 3`

Let the nth term of the given sequence be 729.

an = arn- 1

∴ arn - 1 = 729

= `(sqrt3)(sqrt3)^("n" - 1)` = 729

= `(3)^(1/2) (3)^((n - 1)/2) = (3)^6`

= `(3)^(1/2 + (n - 1)/2) =  (3)^6`

∴ `1/2 + (n - 1)/2 = 6`

= `(1 + n - 1)/2 = 6`

= n = 12

Thus, the 12th term of the given sequence is 729.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Sequences and Series - Exercise 9.3 [पृष्ठ १९२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 9 Sequences and Series
Exercise 9.3 | Q 5.2 | पृष्ठ १९२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.


For what values of x, the numbers  `-2/7, x, -7/2` are in G.P?


Find the sum to n terms of the sequence, 8, 88, 888, 8888… .


The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

−2/3, −6, −54, ...


Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.


The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.


Find the sum of the following geometric series:

\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text {  to n terms }\]


The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.


The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.


A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.


Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.


Find the rational numbers having the following decimal expansion: 

\[0 . \overline3\]


If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively

\[\frac{2S S_1}{S^2 + S_1}\text {  and } \frac{S^2 - S_1}{S^2 + S_1}\]


If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.


If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.


If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.


If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]


If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is 


The two geometric means between the numbers 1 and 64 are 


For the G.P. if r = − 3 and t6 = 1701, find a.


For the G.P. if a = `2/3`, t6 = 162, find r.


For what values of x, the terms `4/3`, x, `4/27` are in G.P.?


The numbers 3, x, and x + 6 form are in G.P. Find 20th term.


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.


For the following G.P.s, find Sn

3, 6, 12, 24, ...


For a G.P. a = 2, r = `-2/3`, find S6


For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r


Find the sum to n terms of the sequence.

0.2, 0.02, 0.002, ...


Find: `sum_("r" = 1)^10 5 xx 3^"r"`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`-3, 1, (-1)/3, 1/9, ...`


Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"` 


Select the correct answer from the given alternative.

The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is –


Select the correct answer from the given alternative.

Which term of the geometric progression 1, 2, 4, 8, ... is 2048


In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.


The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm3 and the total surface area is 252cm2. The length of the longest edge is ______.


The sum or difference of two G.P.s, is again a G.P.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×