मराठी

If S Denotes the Sum of an Infinite G.P. S1 Denotes the Sum of the Squares of Its Terms, Then Prove that the First Term and Common Ratio Are Respectively 2 S S 1 S 2 + S 1 and S 2 − S 1 S 2 + S 1 - Mathematics

Advertisements
Advertisements

प्रश्न

If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively

\[\frac{2S S_1}{S^2 + S_1}\text {  and } \frac{S^2 - S_1}{S^2 + S_1}\]

उत्तर

\[S = \frac{a}{\left( 1 - r \right)} . . . . . . . (i)\]

\[\text { And }, S_1 = \frac{a^2}{\left( 1 - r^2 \right)} \]

\[ \Rightarrow S_1 = \frac{a^2}{\left( 1 - r \right)\left( 1 + r \right)} . . . . . . . (ii)\]

\[\text { Now, putting the value of a in equation (ii) from equation } (i): \]

\[ S_1 = \frac{S^2 \left( 1 - r \right)^2}{\left( 1 - r \right)\left( 1 + r \right)}\]

\[ \Rightarrow S_1 = \frac{S^2 \left( 1 - r \right)}{\left( 1 + r \right)}\]

\[ \Rightarrow S_1 \left( 1 + r \right) = S^2 \left( 1 - r \right)\]

\[ \Rightarrow r\left( S_1 + S^2 \right) = S^2 - S_1 \]

\[ \Rightarrow r = \frac{\left( S^2 - S_1 \right)}{\left( S_1 + S^2 \right)}\]

\[\text { Putting the value of r in equation }(i): \]

\[ \Rightarrow a = S\left( 1 - r \right)\]

\[ \Rightarrow a = S\left( 1 - \frac{\left( S^2 - S_1 \right)}{\left( S_1 + S^2 \right)} \right)\]

\[ \Rightarrow a = S\left( \frac{\left( S_1 + S^2 \right) - \left( S^2 - S_1 \right)}{\left( S_1 + S^2 \right)} \right)\]

\[ \Rightarrow a = \frac{2 {SS}_1}{\left( S_1 + S^2 \right)}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Geometric Progression - Exercise 20.4 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 20 Geometric Progression
Exercise 20.4 | Q 13 | पृष्ठ ४०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Which term of the following sequence:

`1/3, 1/9, 1/27`, ...., is `1/19683`?


Evaluate `sum_(k=1)^11 (2+3^k )`


If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .


If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.


Find :

the 12th term of the G.P.

\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]


If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that abc and d are in G.P.


If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].


Find the sum of the following geometric progression:

4, 2, 1, 1/2 ... to 10 terms.


Find the sum of the following geometric series:

 0.15 + 0.015 + 0.0015 + ... to 8 terms;


Find the sum of the following geometric series:

\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]


How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\]  ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?


Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.


Find the rational numbers having the following decimal expansion: 

\[0 .\overline {231 }\]


The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.


The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.


If a, b, c are in G.P., prove that the following is also in G.P.:

a2, b2, c2


If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.


If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.


If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.


Insert 5 geometric means between 16 and \[\frac{1}{4}\] .


Write the product of n geometric means between two numbers a and b

 


If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is 


If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is


The value of 91/3 . 91/9 . 91/27 ... upto inf, is 


If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is 


Check whether the following sequence is G.P. If so, write tn.

7, 14, 21, 28, …


Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.


If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.


The numbers 3, x, and x + 6 form are in G.P. Find 20th term.


The numbers 3, x, and x + 6 form are in G.P. Find nth term


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.


The numbers x − 6, 2x and x2 are in G.P. Find x


Find the sum to n terms of the sequence.

0.2, 0.02, 0.002, ...


Find: `sum_("r" = 1)^10(3 xx 2^"r")`


If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]


Express the following recurring decimal as a rational number:

`2.3bar(5)`


Answer the following:

If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q


In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×