Advertisements
Advertisements
प्रश्न
How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\] ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?
उत्तर
Here,a = \[\sqrt{3}\] Common ratio,r = \[\sqrt{3}\]
Sum of n terms, Sn = \[39 + 3\sqrt{3}\]
\[S_n = \sqrt{3}\left( \frac{\left( \sqrt{3} \right)^n - 1}{\sqrt{3} - 1} \right) \]
\[ \Rightarrow 39 + 13\sqrt{3} = \frac{\sqrt{3}}{\left( \sqrt{3} - 1 \right)}\left\{ \left( \sqrt{3} \right)^n - 1 \right\}\]
\[ \Rightarrow \left( \sqrt{3} \right)^n - 1 = \frac{\left( 39 + 13\sqrt{3} \right)\left( \sqrt{3} - 1 \right)}{\sqrt{3}}\]
\[ \Rightarrow \left( \sqrt{3} \right)^n = 1 + 26\]
\[ \Rightarrow \left( \sqrt{3} \right)^n = 27 \]
\[ \Rightarrow \left( \sqrt{3} \right)^n = \left( \sqrt{3} \right)^6 \]
\[ \therefore n = 6\]
APPEARS IN
संबंधित प्रश्न
Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`
Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.
Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…
The sum of first three terms of a G.P. is `39/10` and their product is 1. Find the common ratio and the terms.
Find :
the 12th term of the G.P.
\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]
Find three numbers in G.P. whose sum is 65 and whose product is 3375.
The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.
The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.
Find the sum of the following geometric progression:
1, 3, 9, 27, ... to 8 terms;
Find the sum of the following geometric series:
`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;
Find the sum of the following serie:
5 + 55 + 555 + ... to n terms;
The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.
Find the sum :
\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].
Express the recurring decimal 0.125125125 ... as a rational number.
Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.
If a, b, c are in G.P., prove that:
\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]
If a, b, c are in G.P., prove that:
\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]
Mark the correct alternative in the following question:
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to
For the G.P. if r = − 3 and t6 = 1701, find a.
Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.
The number of bacteria in a culture doubles every hour. If there were 50 bacteria originally in the culture, how many bacteria will be there at the end of 5thhour?
For a G.P. if a = 2, r = 3, Sn = 242 find n
For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r
For a G.P. If t4 = 16, t9 = 512, find S10
Find the sum to n terms of the sequence.
0.2, 0.02, 0.002, ...
Find: `sum_("r" = 1)^10(3 xx 2^"r")`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/2, 1/4, 1/8, 1/16,...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`2, 4/3, 8/9, 16/27, ...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`-3, 1, (-1)/3, 1/9, ...`
Express the following recurring decimal as a rational number:
`2.bar(4)`
Express the following recurring decimal as a rational number:
`51.0bar(2)`
Find : `sum_("r" = 1)^oo (-1/3)^"r"`
Select the correct answer from the given alternative.
The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is –
If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.
In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.
The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.