Advertisements
Advertisements
प्रश्न
Find the sum of the following serie:
5 + 55 + 555 + ... to n terms;
उत्तर
We have,
5 + 55 + 555+ ... n terms
Taking 5 as common:
\[S_n\] = 5[1 + 11 + 111 + ... n terms]
\[= \frac{5}{9}\left( 9 + 99 + 999 + . . . \text { n terms } \right)\]
\[ = \frac{5}{9}\left\{ \left( 10 - 1 \right) + \left( {10}^2 - 1 \right) + \left( {10}^3 - 1 \right) + . . . + \left( {10}^n - 1 \right) \right\}\]
\[ = \frac{5}{9}\left\{ \left( 10 + {10}^2 + {10}^3 + . . . + {10}^n \right) \right\} - \left( 1 + 1 + 1 + 1 + . . .\text { n times } \right)\]
\[ = \frac{5}{9}\left\{ 10 \times \frac{\left( {10}^n - 1 \right)}{10 - 1} - n \right\} \]
\[ = \frac{5}{9} \left\{ \frac{10}{9}\left( {10}^n - 1 \right) - n \right\}\]
\[ = \frac{5}{81}\left\{ {10}^{n + 1} - 9n - 10 \right\}\]
APPEARS IN
संबंधित प्रश्न
The sum of first three terms of a G.P. is `39/10` and their product is 1. Find the common ratio and the terms.
Given a G.P. with a = 729 and 7th term 64, determine S7.
Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`
If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .
Insert two numbers between 3 and 81 so that the resulting sequence is G.P.
The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.
The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that P2Rn = Sn
Find:
the 10th term of the G.P.
\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]
Which term of the G.P. :
\[2, 2\sqrt{2}, 4, . . .\text { is }128 ?\]
Which term of the G.P. :
\[\sqrt{3}, 3, 3\sqrt{3}, . . . \text { is } 729 ?\]
If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.
If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.
Find three numbers in G.P. whose sum is 65 and whose product is 3375.
The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is \[87\frac{1}{2}\] . Find them.
Find the sum of the following geometric progression:
2, 6, 18, ... to 7 terms;
Find the sum of the following geometric progression:
1, −1/2, 1/4, −1/8, ... to 9 terms;
Find the sum of the following geometric series:
`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;
Find the sum of the following geometric series:
1, −a, a2, −a3, ....to n terms (a ≠ 1)
The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.
Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.
Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.
Find the sum of the terms of an infinite decreasing G.P. in which all the terms are positive, the first term is 4, and the difference between the third and fifth term is equal to 32/81.
If a, b, c are in G.P., prove that the following is also in G.P.:
a3, b3, c3
If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
If a, b, c are in A.P. and a, x, b and b, y, c are in G.P., show that x2, b2, y2 are in A.P.
If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.
If A1, A2 be two AM's and G1, G2 be two GM's between a and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
If a, b, c are in G.P. and x, y are AM's between a, b and b,c respectively, then
Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals
The two geometric means between the numbers 1 and 64 are
Check whether the following sequence is G.P. If so, write tn.
2, 6, 18, 54, …
If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`
Find GM of two positive numbers whose A.M. and H.M. are 75 and 48
Answer the following:
If for a G.P. t3 = `1/3`, t6 = `1/81` find r