मराठी

Find the Sum of the Following Series: 7 + 77 + 777 + ... to N Terms; - Mathematics

Advertisements
Advertisements

प्रश्न

Find the sum of the following series:

7 + 77 + 777 + ... to n terms;

उत्तर

We have,
7 + 77 + 777 + ... n terms

\[S_n\] = 7 [1 + 11 + 111 + ... n terms]

\[= \frac{7}{9}\left( 9 + 99 + 999 + . . . \text { n terms } \right)\]

\[ = \frac{7}{9}\left\{ \left( 10 - 1 \right) + \left( {10}^2 - 1 \right) + \left( {10}^3 - 1 \right) + . . . + \left( {10}^n - 1 \right) \right\}\]

\[ = \frac{7}{9}\left\{ \left( 10 + {10}^2 + {10}^3 + . . . + {10}^n \right) \right\} - \left( 1 + 1 + 1 + 1 . . . \text {n times }\right)\]

\[ = \frac{7}{9}\left\{ 10 \times \frac{\left( {10}^n - 1 \right)}{10 - 1} - n \right\} = \frac{7}{9} \left\{ \frac{10}{9}\left( {10}^n - 1 \right) - n \right\}\]

\[ = \frac{7}{81}\left\{ {10}^{n + 1} - 9n - 10 \right\}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Geometric Progression - Exercise 20.3 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 20 Geometric Progression
Exercise 20.3 | Q 4.2 | पृष्ठ २८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.


Find :

the 12th term of the G.P.

\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]


Evaluate the following:

\[\sum^{11}_{n = 1} (2 + 3^n )\]


Evaluate the following:

\[\sum^{10}_{n = 2} 4^n\]


Find the sum of the following series:

0.5 + 0.55 + 0.555 + ... to n terms.


The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].


Find the sum of the following serie to infinity:

\[1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \frac{1}{3^4} + . . . \infty\]


Find the sum of the following serie to infinity:

\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]


Find the rational number whose decimal expansion is \[0 . 423\].


One side of an equilateral triangle is 18 cm. The mid-points of its sides are joined to form another triangle whose mid-points, in turn, are joined to form still another triangle. The process is continued indefinitely. Find the sum of the (i) perimeters of all the triangles. (ii) areas of all triangles.


Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.


Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.


If a, b, c, d are in G.P., prove that:

 (a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2


If a, b, c, d are in G.P., prove that:

(b + c) (b + d) = (c + a) (c + d)


If a, b, c are in G.P., prove that the following is also in G.P.:

a2 + b2, ab + bc, b2 + c2


If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.


Insert 6 geometric means between 27 and  \[\frac{1}{81}\] .


Find the geometric means of the following pairs of number:

2 and 8


The value of 91/3 . 91/9 . 91/27 ... upto inf, is 


Let x be the A.M. and yz be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\]  is equal to 


Check whether the following sequence is G.P. If so, write tn.

2, 6, 18, 54, …


For the G.P. if r = − 3 and t6 = 1701, find a.


If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.


The number of bacteria in a culture doubles every hour. If there were 50 bacteria originally in the culture, how many bacteria will be there at the end of 5thhour?


The numbers x − 6, 2x and x2 are in G.P. Find 1st term


The numbers x − 6, 2x and x2 are in G.P. Find nth term


For the following G.P.s, find Sn.

p, q, `"q"^2/"p", "q"^3/"p"^2,` ...


If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.


Find : `sum_("n" = 1)^oo 0.4^"n"`


Find GM of two positive numbers whose A.M. and H.M. are 75 and 48


Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.


Answer the following:

For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r


Answer the following:

If for a G.P. t3 = `1/3`, t6 = `1/81` find r


If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c


In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.


If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1


For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×