Advertisements
Advertisements
प्रश्न
If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.
उत्तर
It is given that a and b are the roots of x2 – 3x + p = 0
∴ a + b = 3 and ab = p … (1)
Also, c and d are the roots of x2 – 12x + q = 0
∴ c + d = 12 and cd = q … (2)
It is given that a, b, c, d are in G.P.
Let a = x, b = xr, c = xr2, d = xr3
From (1) and (2), we obtain
x + xr = 3
⇒ x (1 + r) = 3
xr2 + xr3 =12
⇒ xr2 (1 + r) = 12
On dividing, we obtain
`(x^2 (1 + r))/(x (1 + r)) = (12)/(3)`
= r2 = 4
= r = ±2
When r = 2, `x = 3/(1 + 2) = 3/2 = 1`
When r = -2, `x = 3/(1 - 2) = 3/(-1) = -3`
Case I:
When r = 2 and x = 1
ab = x2 r = 2
cd = x2 r5 = 32
∴ `(q + p)/(q - p) = (32 + 2)/(32 - 2) = 34/30 = 17/15`
i.e. (q + p) : (q - p) = 17 :15
Case II:
When r = -2, x = -3
ab = x2 r = -18
cd = x2 r5 = -288
∴ `(q + p)/(q - p) = (-288 - 18)/(-288 + 18) = (-306)/(-270) = 17/15`
i.e., (q + p) : (q - p) = 17 : 15
Thus, in both the cases, we obtain (q+p) : (q − p) = 17 : 15
APPEARS IN
संबंधित प्रश्न
Given a G.P. with a = 729 and 7th term 64, determine S7.
Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio
If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .
Find the value of n so that `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.
The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.
If a, b, c are in A.P,; b, c, d are in G.P and ` 1/c, 1/d,1/e` are in A.P. prove that a, c, e are in G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...
The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.
Find the sum of the following geometric progression:
2, 6, 18, ... to 7 terms;
Find the sum of the following geometric series:
\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]
Find the sum of the following geometric series:
x3, x5, x7, ... to n terms
How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?
How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\] ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?
If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.
Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.
The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.
If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively
\[\frac{2S S_1}{S^2 + S_1}\text { and } \frac{S^2 - S_1}{S^2 + S_1}\]
The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.
If a, b, c, d are in G.P., prove that:
\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]
If a, b, c, d are in G.P., prove that:
(a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2
If a, b, c are in G.P., prove that the following is also in G.P.:
a3, b3, c3
If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.
If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is
If A be one A.M. and p, q be two G.M.'s between two numbers, then 2 A is equal to
Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1
The numbers 3, x, and x + 6 form are in G.P. Find 20th term.
For the following G.P.s, find Sn
0.7, 0.07, 0.007, .....
For a G.P. If t4 = 16, t9 = 512, find S10
Express the following recurring decimal as a rational number:
`0.bar(7)`
If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.
Select the correct answer from the given alternative.
The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is –
Select the correct answer from the given alternative.
If common ratio of the G.P is 5, 5th term is 1875, the first term is -
Select the correct answer from the given alternative.
The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –
Answer the following:
For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r
Answer the following:
Find three numbers in G.P. such that their sum is 35 and their product is 1000
Answer the following:
Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...
The third term of a G.P. is 4, the product of the first five terms is ______.
Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.