Advertisements
Advertisements
प्रश्न
If a, b, c, d are in G.P., prove that:
\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]
उत्तर
a, b, c and d are in G.P.
\[\therefore b^2 = ac\]
\[bc = ad\]
\[ c^2 = bd\] .......(1)
\[\text { LHS } = \frac{ab - cd}{b^2 - c^2}\]
\[ = \frac{ab - cd}{ac - bd} \left[\text { Using } (1) \right]\]
\[ = \frac{\left( ab - cd \right)b}{\left( ac - bd \right)b} \]
\[ = \frac{a b^2 - bcd}{\left( ac - bd \right)b}\]
\[ = \frac{a\left( ac \right) - c\left( c^2 \right)}{\left( ac - bd \right)b} \left[ \text { Using } (1) \right]\]
\[ = \frac{a^2 c - c^3}{\left( ac - bd \right)b}\]
\[ = \frac{c\left( a^2 - c^2 \right)}{\left( ac - bd \right)b}\]
\[ = \frac{\left( a + c \right)\left( ac - c^2 \right)}{\left( ac - bd \right)b}\]
\[ = \frac{\left( a + c \right)\left( ac - bd \right)}{\left( ac - bd \right)b} \left[\text{ Using } (1) \right]\]
\[ = \frac{\left( a + c \right)}{b} = \text { RHS }\]
APPEARS IN
संबंधित प्रश्न
Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).
If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .
If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
−2/3, −6, −54, ...
Find :
the 8th term of the G.P. 0.3, 0.06, 0.012, ...
Find :
nth term of the G.P.
\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]
Find three numbers in G.P. whose sum is 65 and whose product is 3375.
Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.
Find the sum of the following geometric progression:
(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;
Find the sum of the following geometric series:
0.15 + 0.015 + 0.0015 + ... to 8 terms;
Find the sum of the following geometric series:
\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8 terms };\]
Evaluate the following:
\[\sum^{11}_{n = 1} (2 + 3^n )\]
Find the sum of the following serie:
5 + 55 + 555 + ... to n terms;
How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?
If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.
Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.
Find the sum of the following serie to infinity:
\[1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \frac{1}{3^4} + . . . \infty\]
One side of an equilateral triangle is 18 cm. The mid-points of its sides are joined to form another triangle whose mid-points, in turn, are joined to form still another triangle. The process is continued indefinitely. Find the sum of the (i) perimeters of all the triangles. (ii) areas of all triangles.
If a, b, c are in G.P., prove that log a, log b, log c are in A.P.
If logxa, ax/2 and logb x are in G.P., then write the value of x.
If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]
Let x be the A.M. and y, z be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\] is equal to
The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to
In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is
For the G.P. if a = `7/243`, r = 3 find t6.
If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio
The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz
If S, P, R are the sum, product, and sum of the reciprocals of n terms of a G.P. respectively, then verify that `["S"/"R"]^"n"` = P2
If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term
A ball is dropped from a height of 10m. It bounces to a height of 6m, then 3.6m and so on. Find the total distance travelled by the ball
Select the correct answer from the given alternative.
Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)
Answer the following:
For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r
Answer the following:
Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...
Answer the following:
If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0
In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.
For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.
The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.
If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.
Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______.