Advertisements
Advertisements
प्रश्न
Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.
उत्तर
Let the required numbers be \[\frac{a}{r}, \text { a and ar } .\]
Product of the G.P. = 729
\[\Rightarrow a^3 = 729\]
\[ \Rightarrow a = 9\]
Sum of the products in pairs = 819
\[\Rightarrow \frac{a}{r} \times a + a \times ar + ar \times \frac{a}{r} = 819\]
\[ \Rightarrow a^2 \left( \frac{1}{r} + r + 1 \right) = 819\]
\[ \Rightarrow 81\left( \frac{1 + r^2 + r}{r} \right) = 819\]
\[ \Rightarrow 9\left( r^2 + r + 1 \right) = 91r\]
\[ \Rightarrow 9 r^2 - 82r + 9 = 0\]
\[ \Rightarrow 9 r^2 - 81r - r + 9 = 0\]
\[ \Rightarrow \left( 9r - 1 \right)\left( r - 9 \right) = 0\]
\[ \Rightarrow r = \frac{1}{9}, 9\]
\[\text { Hence, putting the values of a and r, we get the numbers to be 81, 9 and 1 or 1, 9 and 81 } .\]
APPEARS IN
संबंधित प्रश्न
The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.
How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?
If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.
Find the 4th term from the end of the G.P.
If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.
If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.
If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that a, b, c and d are in G.P.
The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.
Evaluate the following:
\[\sum^{10}_{n = 2} 4^n\]
Find the sum of the following series:
0.5 + 0.55 + 0.555 + ... to n terms.
If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).
Find the rational numbers having the following decimal expansion:
\[3 . 5\overline 2\]
If a, b, c, d are in G.P., prove that:
(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.
If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.
If pth, qth and rth terms of an A.P. and G.P. are both a, b and c respectively, show that \[a^{b - c} b^{c - a} c^{a - b} = 1\]
Insert 6 geometric means between 27 and \[\frac{1}{81}\] .
Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .
Check whether the following sequence is G.P. If so, write tn.
1, –5, 25, –125 …
Check whether the following sequence is G.P. If so, write tn.
`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...
Which term of the G.P. 5, 25, 125, 625, … is 510?
The numbers 3, x, and x + 6 form are in G.P. Find 20th term.
The numbers x − 6, 2x and x2 are in G.P. Find nth term
For the following G.P.s, find Sn
0.7, 0.07, 0.007, .....
Find the sum to n terms of the sequence.
0.2, 0.02, 0.002, ...
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`2, 4/3, 8/9, 16/27, ...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`
Express the following recurring decimal as a rational number:
`0.bar(7)`
Select the correct answer from the given alternative.
If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?
Select the correct answer from the given alternative.
Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)
Answer the following:
Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`
Answer the following:
Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...
Answer the following:
For a G.P. if t2 = 7, t4 = 1575 find a
Answer the following:
Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.
Answer the following:
If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q
Answer the following:
Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.
If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1
Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.
Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______.