Advertisements
Advertisements
प्रश्न
Answer the following:
Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.
उत्तर
Since k – 1, k, k + 2 are consecutive terms of a G.P., we have,
`"k"/("k" - 1) = ("k" + 2)/"k"`
∴ k2 = (k – 1)(k + 2)
∴ k2 = k2 + k – 2
∴ k – 2 = 0
∴ k = 2.
APPEARS IN
संबंधित प्रश्न
If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`
The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.
If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
4, −2, 1, −1/2, ...
Which term of the G.P. :
\[2, 2\sqrt{2}, 4, . . .\text { is }128 ?\]
The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.
If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.
Find the sum of the following serie:
5 + 55 + 555 + ... to n terms;
Find the sum of the following series:
7 + 77 + 777 + ... to n terms;
The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.
If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).
How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?
Express the recurring decimal 0.125125125 ... as a rational number.
Find the rational numbers having the following decimal expansion:
\[3 . 5\overline 2\]
The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.
If a, b, c are in G.P., prove that:
\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]
Insert 6 geometric means between 27 and \[\frac{1}{81}\] .
If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.
If a, b, c are in G.P. and x, y are AM's between a, b and b,c respectively, then
For the G.P. if a = `2/3`, t6 = 162, find r.
The numbers 3, x, and x + 6 form are in G.P. Find x
The numbers x − 6, 2x and x2 are in G.P. Find nth term
Find the sum to n terms of the sequence.
0.5, 0.05, 0.005, ...
If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]
If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares
Select the correct answer from the given alternative.
The common ratio for the G.P. 0.12, 0.24, 0.48, is –
Select the correct answer from the given alternative.
If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?
Select the correct answer from the given alternative.
The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –
Select the correct answer from the given alternative.
Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –
Answer the following:
Find three numbers in G.P. such that their sum is 35 and their product is 1000
Answer the following:
If for a G.P. first term is (27)2 and seventh term is (8)2, find S8
Answer the following:
If p, q, r, s are in G.P., show that (p2 + q2 + r2) (q2 + r2 + s2) = (pq + qr + rs)2
If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.
In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.
Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.
The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.