Advertisements
Advertisements
प्रश्न
Find the sum to n terms of the sequence.
0.5, 0.05, 0.005, ...
उत्तर
Here, t1 = 0.5, t2 = 0.05, t3 = 0.005
∴ `"t"_2/"t"_1 = 0.05/0.5` = 0.1 and `"t"_3/"t"_2 = 0.005/0.05` = 0.1
∴ The given sequence is a G.P.
∴ a = 0.5 and r = 0.1
∴ Sn = `("a"(1 - "r"^"n"))/(1 - "r")`, for r < 1
= `(0.5[1 - (0.1)^"n"])/(1 - 0.1)`
= `0.5/0.9 [1 - (0.1)^"n"]`
= `5/9[1 - (1/10)^"n"]`
APPEARS IN
संबंधित प्रश्न
Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`
Which term of the following sequence:
`1/3, 1/9, 1/27`, ...., is `1/19683`?
How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?
If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.
Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that P2Rn = Sn
If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.
Find:
the ninth term of the G.P. 1, 4, 16, 64, ...
Find the 4th term from the end of the G.P.
Which term of the G.P. :
\[2, 2\sqrt{2}, 4, . . .\text { is }128 ?\]
Find the sum of the following geometric series:
x3, x5, x7, ... to n terms
Evaluate the following:
\[\sum^{11}_{n = 1} (2 + 3^n )\]
Find the rational numbers having the following decimal expansion:
\[0 . \overline3\]
Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.
If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.
If a, b, c are in G.P., prove that:
a (b2 + c2) = c (a2 + b2)
If a, b, c are in G.P., prove that:
\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]
If a, b, c are in G.P., prove that:
\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]
If a, b, c, d are in G.P., prove that:
(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.
If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)
If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.
If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.
The fractional value of 2.357 is
If A be one A.M. and p, q be two G.M.'s between two numbers, then 2 A is equal to
In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is
Check whether the following sequence is G.P. If so, write tn.
1, –5, 25, –125 …
Check whether the following sequence is G.P. If so, write tn.
`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...
For the G.P. if r = − 3 and t6 = 1701, find a.
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.
The numbers x − 6, 2x and x2 are in G.P. Find nth term
For a G.P. if a = 2, r = 3, Sn = 242 find n
For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`-3, 1, (-1)/3, 1/9, ...`
Select the correct answer from the given alternative.
Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –
Answer the following:
If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0
The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.
If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.
Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______.