हिंदी

Find the sum to n terms of the sequence. 0.5, 0.05, 0.005, ... - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the sum to n terms of the sequence.

0.5, 0.05, 0.005, ...

योग

उत्तर

Here, t1 = 0.5, t2 = 0.05, t3 = 0.005

∴ `"t"_2/"t"_1 = 0.05/0.5` = 0.1 and `"t"_3/"t"_2 = 0.005/0.05` = 0.1

∴ The given sequence is a G.P.

∴ a = 0.5 and r = 0.1

∴ Sn = `("a"(1 - "r"^"n"))/(1 - "r")`, for r < 1

= `(0.5[1 - (0.1)^"n"])/(1 - 0.1)`

= `0.5/0.9 [1 - (0.1)^"n"]`

= `5/9[1 - (1/10)^"n"]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Sequences and Series - Exercise 2.2 [पृष्ठ ३१]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 2 Sequences and Series
Exercise 2.2 | Q 7. (i) | पृष्ठ ३१

संबंधित प्रश्न

The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.


Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).


Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).


The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.


If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.


If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .


Find the value of n so that  `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.


The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.


Find :

the 8th term of the G.P. 0.3, 0.06, 0.012, ...


Which term of the G.P. :

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]


Which term of the G.P. :

\[\sqrt{3}, 3, 3\sqrt{3}, . . . \text { is } 729 ?\]


The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.

 

Find the sum of the following geometric progression:

2, 6, 18, ... to 7 terms;


Find the sum of the following geometric progression:

1, −1/2, 1/4, −1/8, ... to 9 terms;


Find the sum of the following geometric series:

\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]


Find the sum of the following geometric series:

x3, x5, x7, ... to n terms


Evaluate the following:

\[\sum^{10}_{n = 2} 4^n\]


Find the sum of the following serie:

5 + 55 + 555 + ... to n terms;


Find the sum of the following series:

0.6 + 0.66 + 0.666 + .... to n terms


The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.


Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.


If a, b, c are in G.P., prove that log a, log b, log c are in A.P.


If a, b, c are in G.P., prove that the following is also in G.P.:

a2 + b2, ab + bc, b2 + c2


If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.

  

Find the geometric means of the following pairs of number:

a3b and ab3


The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .


If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to


Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.


The number of bacteria in a culture doubles every hour. If there were 50 bacteria originally in the culture, how many bacteria will be there at the end of 5thhour?


For a G.P. if S5 = 1023 , r = 4, Find a


For a G.P. if a = 2, r = 3, Sn = 242 find n


For a G.P. If t3 = 20 , t6 = 160 , find S7


Find the sum to n terms of the sequence.

0.2, 0.02, 0.002, ...


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

9, 8.1, 7.29, ...


Select the correct answer from the given alternative.

The common ratio for the G.P. 0.12, 0.24, 0.48, is –


Answer the following:

Find `sum_("r" = 1)^"n" (2/3)^"r"`


If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×