हिंदी

If A, B, C Are in G.P., Prove that the Following is Also in G.P.: A2 + B2, Ab + Bc, B2 + C2 - Mathematics

Advertisements
Advertisements

प्रश्न

If a, b, c are in G.P., prove that the following is also in G.P.:

a2 + b2, ab + bc, b2 + c2

उत्तर

a, b and c are in G.P.
∴ \[b^2 = ac . . . . . . . (1)\]

\[\left( ab + bc \right)^2 = \left( ab \right)^2 + 2a b^2 c + \left( bc \right)^2 \]

\[ \Rightarrow \left( ab + bc \right)^2 = \left( ab \right)^2 + a b^2 c + a b^2 c + \left( bc \right)^2 \]

\[ \Rightarrow \left( ab + bc \right)^2 = a^2 b^2 + ac\left( ac \right) + b^2 \left( b^2 \right) + b^2 c^2 \left[ \text { Using } (1) \right]\]

\[ \Rightarrow \left( ab + bc \right)^2 = a^2 \left( b^2 + c^2 \right) + b^2 \left( b^2 + c^2 \right)\]

\[ \Rightarrow \left( ab + bc \right)^2 = \left( b^2 + c^2 \right)\left( a^2 + b^2 \right)\]

\[\text { Therefore }, \left( a^2 + b^2 \right), \left( b^2 + c^2 \right) \text { and  }\left( ab + bc \right) \text { are also in G . P } . \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.5 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.5 | Q 10.3 | पृष्ठ ४६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`


Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).


Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.


If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.


Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.


If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`


The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

−2/3, −6, −54, ...


Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?

 

Find the 4th term from the end of the G.P.

\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]


Find the sum of the following geometric series:

 0.15 + 0.015 + 0.0015 + ... to 8 terms;


Find the sum of the following geometric series:

x3, x5, x7, ... to n terms


Find the sum of the following series:

0.5 + 0.55 + 0.555 + ... to n terms.


The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.


The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.


If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).


If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.


If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.


Find the sum of the terms of an infinite decreasing G.P. in which all the terms are positive, the first term is 4, and the difference between the third and fifth term is equal to 32/81.


If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively

\[\frac{2S S_1}{S^2 + S_1}\text {  and } \frac{S^2 - S_1}{S^2 + S_1}\]


If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.


Three numbers are in A.P. and their sum is 15. If 1, 3, 9 be added to them respectively, they form a G.P. Find the numbers.


The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.


If a, b, c are in G.P., prove that:

\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]


If a, b, c, d are in G.P., prove that:

(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.


If a, b, c, d are in G.P., prove that:

(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.


If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.


If A be one A.M. and pq be two G.M.'s between two numbers, then 2 A is equal to 


For the G.P. if a = `7/243`, r = 3 find t6.


For what values of x, the terms `4/3`, x, `4/27` are in G.P.?


Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.


Select the correct answer from the given alternative.

Which term of the geometric progression 1, 2, 4, 8, ... is 2048


Answer the following:

Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.


Answer the following:

If for a G.P. t3 = `1/3`, t6 = `1/81` find r


In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.


The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×