Advertisements
Advertisements
प्रश्न
Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?
उत्तर
\[\text { Here, first term }, a = 18 \]
\[\text { and common ratio }, r = \frac{- 2}{3}\]
\[\text { Let the } n^{th} \text { term be } \frac{512}{729} . \]
\[ \therefore a r^{n - 1} = \frac{512}{729}\]
\[ \Rightarrow \left( 18 \right) \left( \frac{- 2}{3} \right)^{n - 1} = \frac{512}{729}\]
\[ \Rightarrow \left( \frac{- 2}{3} \right)^{n - 1} = \frac{512}{729} \times \frac{1}{18} = \frac{256}{6561}\]
\[ \Rightarrow \left( \frac{- 2}{3} \right)^{n - 1} = \left( \frac{- 2}{3} \right)^8 \]
\[ \Rightarrow n - 1 = 8 \]
\[ \Rightarrow n = 9\]
\[\text { Thus, the } 9^{th} \text { term of the given G . P . is } \frac{512}{729} .\]
APPEARS IN
संबंधित प्रश्न
Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.
The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.
Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…
Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).
Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.
if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.
Find :
nth term of the G.P.
\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]
Find three numbers in G.P. whose sum is 38 and their product is 1728.
The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is \[87\frac{1}{2}\] . Find them.
The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.
The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.
Find the sum of the following serie:
5 + 55 + 555 + ... to n terms;
Find the sum of the following series:
9 + 99 + 999 + ... to n terms;
How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?
Find the rational numbers having the following decimal expansion:
\[0 .\overline {231 }\]
Three numbers are in A.P. and their sum is 15. If 1, 3, 9 be added to them respectively, they form a G.P. Find the numbers.
The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.
If a, b, c are in G.P., prove that:
(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.
If a, b, c, d are in G.P., prove that:
(a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2
Insert 6 geometric means between 27 and \[\frac{1}{81}\] .
The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
If p, q be two A.M.'s and G be one G.M. between two numbers, then G2 =
Check whether the following sequence is G.P. If so, write tn.
1, –5, 25, –125 …
Check whether the following sequence is G.P. If so, write tn.
`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...
Which term of the G.P. 5, 25, 125, 625, … is 510?
The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/2, 1/4, 1/8, 1/16,...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`2, 4/3, 8/9, 16/27, ...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`
Express the following recurring decimal as a rational number:
`51.0bar(2)`
If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.
Select the correct answer from the given alternative.
Which term of the geometric progression 1, 2, 4, 8, ... is 2048
Answer the following:
Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.
Answer the following:
For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.
Answer the following:
If for a G.P. t3 = `1/3`, t6 = `1/81` find r
If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.
The third term of a G.P. is 4, the product of the first five terms is ______.
The sum or difference of two G.P.s, is again a G.P.