Advertisements
Advertisements
प्रश्न
Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…
उत्तर
The given G.P. is 0.15, 0.015, 0.00015,...
First term, a = 0.15
Common ratio, r = `0.015/0.15` = 0.1
Sum of geometric series = `("a"(1 - "r"^"n"))/(1 - "r")`
= `(0.15[1 - (0.1)^20])/(1 - (0.1))`
= `(0.15[1 - (0.1)^20])/0.9`
= `(1 - (0.1)^20)/6`
= `1/6[1 - (0.1)^20]`
APPEARS IN
संबंधित प्रश्न
Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).
Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.
Find the sum to n terms of the sequence, 8, 88, 888, 8888… .
The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.
Find :
the 10th term of the G.P.
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]
The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.
The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.
If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.
Find three numbers in G.P. whose sum is 65 and whose product is 3375.
Find the sum of the following geometric series:
0.15 + 0.015 + 0.0015 + ... to 8 terms;
Find the sum of the following geometric series:
\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8 terms };\]
Find the sum of the following series:
0.6 + 0.66 + 0.666 + .... to n terms
How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?
A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.
Find the rational numbers having the following decimal expansion:
\[3 . 5\overline 2\]
Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.
If a, b, c are in G.P., prove that:
\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]
If a, b, c, d are in G.P., prove that:
\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]
If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.
Let x be the A.M. and y, z be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\] is equal to
For the G.P. if a = `2/3`, t6 = 162, find r.
Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.
For the following G.P.s, find Sn.
p, q, `"q"^2/"p", "q"^3/"p"^2,` ...
For a G.P. If t3 = 20 , t6 = 160 , find S7
For a G.P. If t4 = 16, t9 = 512, find S10
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`2, 4/3, 8/9, 16/27, ...`
Express the following recurring decimal as a rational number:
`51.0bar(2)`
If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term
Find : `sum_("r" = 1)^oo 4(0.5)^"r"`
Select the correct answer from the given alternative.
Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –
Answer the following:
If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q
Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.
Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.
If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.