हिंदी

Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,… - Mathematics

Advertisements
Advertisements

प्रश्न

Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…

योग

उत्तर

The given G.P. is 0.15, 0.015, 0.00015,...

First term, a = 0.15

Common ratio, r = `0.015/0.15` = 0.1

Sum of geometric series = `("a"(1 - "r"^"n"))/(1 - "r")`

= `(0.15[1 - (0.1)^20])/(1 - (0.1))`

= `(0.15[1 - (0.1)^20])/0.9`

= `(1 - (0.1)^20)/6`

= `1/6[1 - (0.1)^20]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Sequences and Series - Exercise 9.3 [पृष्ठ १९२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 9 Sequences and Series
Exercise 9.3 | Q 7 | पृष्ठ १९२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).


Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.


Find the sum to n terms of the sequence, 8, 88, 888, 8888… .


The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.


Find :

the 10th term of the G.P.

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]


The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.


The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.


If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.


Find three numbers in G.P. whose sum is 65 and whose product is 3375.


Find the sum of the following geometric series:

 0.15 + 0.015 + 0.0015 + ... to 8 terms;


Find the sum of the following geometric series:

\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8  terms };\]


Find the sum of the following series:

0.6 + 0.66 + 0.666 + .... to n terms


How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?


A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.


Find the rational numbers having the following decimal expansion: 

\[3 . 5\overline 2\]


Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.


If a, b, c are in G.P., prove that:

\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]


If a, b, c, d are in G.P., prove that:

\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]


If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.

 

 

 


Let x be the A.M. and yz be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\]  is equal to 


For the G.P. if a = `2/3`, t6 = 162, find r.


Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.


For the following G.P.s, find Sn.

p, q, `"q"^2/"p", "q"^3/"p"^2,` ...


For a G.P. If t3 = 20 , t6 = 160 , find S7


For a G.P. If t4 = 16, t9 = 512, find S10


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`2, 4/3, 8/9, 16/27, ...`


Express the following recurring decimal as a rational number:

`51.0bar(2)`


If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term


Find : `sum_("r" = 1)^oo 4(0.5)^"r"`


Select the correct answer from the given alternative.

Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –


Answer the following:

If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q


Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.


Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.


If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×