Advertisements
Advertisements
प्रश्न
Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.
उत्तर
Let the five numbers in G.P. be `"a"/"r"^2, "a"/"r", "a", "ar","ar"^2`
According to the given conditions,
`"a"/"r"^2 xx "a"/"r" xx "a" xx "ar" xx "ar"^2` = 1024
∴ a5 = 45
∴ a = 4 ...(i)
Also, ar2 = a2
∴ r2 = a
∴ r2 = 4 ...[From (i)]
∴ r = ± 2
When a = 4, r = 2
`"a"/"r"^2` = 1, `"a"/"r"` = 2, a = 4, ar = 8, ar2 = 16
When a = 4, r = – 2
`"a"/"r"^2` = 1, `"a"/"r"` = −2, a = 4, ar = −8, ar2 = 16
∴ the five numbers are 1, 2, 4, 8, 16 or 1, – 2, 4, – 8, 16.
APPEARS IN
संबंधित प्रश्न
The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.
If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.
Find the value of n so that `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.
If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.
Find :
the 12th term of the G.P.
\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]
The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.
Evaluate the following:
\[\sum^{10}_{n = 2} 4^n\]
A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.
If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.
The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.
If a, b, c are in G.P., prove that:
\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]
If a, b, c, d are in G.P., prove that:
(a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2
If a, b, c are in G.P., prove that the following is also in G.P.:
a2 + b2, ab + bc, b2 + c2
If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.
Insert 6 geometric means between 27 and \[\frac{1}{81}\] .
Find the geometric means of the following pairs of number:
2 and 8
Find the geometric means of the following pairs of number:
a3b and ab3
If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is
If the first term of a G.P. a1, a2, a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is
If p, q be two A.M.'s and G be one G.M. between two numbers, then G2 =
Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.
If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.
For the following G.P.s, find Sn.
p, q, `"q"^2/"p", "q"^3/"p"^2,` ...
For a G.P. a = 2, r = `-2/3`, find S6
Find the sum to n terms of the sequence.
0.2, 0.02, 0.002, ...
For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.
Express the following recurring decimal as a rational number:
`2.bar(4)`
Find : `sum_("n" = 1)^oo 0.4^"n"`
Find GM of two positive numbers whose A.M. and H.M. are 75 and 48
Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.
Select the correct answer from the given alternative.
Which term of the geometric progression 1, 2, 4, 8, ... is 2048
Answer the following:
Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.
Answer the following:
Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.
Answer the following:
If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.
If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.
In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.
If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.
The third term of a G.P. is 4, the product of the first five terms is ______.