Advertisements
Advertisements
प्रश्न
Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1
उत्तर
Let the four numbers in G.P. be `"a"/"r"^3, "a"/"r", "ar", "ar"^3`
Since their product is 1, `"a"/"r"^3*"a"/"r"*"ar"*"ar"^3` = 1
∴ a4 = 1
∴ a = 1
Also the sum of middle two numbers is `10/3`
∴ `"a"/"r" + "ar" = 10/3`
∴ `"a"(1/"r" + "r") = 10/3`
∴ `1/"r" + "r" = 10/3` as a = 1
∴ `(1 + "r"^2)/"r" = 10/3`
∴ 3 + 3r2 = 10r
∴ 3r2 – 10r + 3 = 0
∴ (r – 3)(3r – 1) = 0
∴ r = 3 or r = `1/3`
Taking r = 3, `"a"/"r"^3 = 1/27, "a"/"r" = 1/3`, ar3 = 27 and the four numbers are `1/27, 1/3, 3, 27`.
Taking r = `1/3`, `"a"/"r"^3 = 1/((1/27))` = 27, `"a"/"r" = 1/((1/3))` = 3, `"ar" = 1/3`, ar3 = `1/27` and the our numbers are 27, 3, `1/3`, `1/27`.
Hence, the required numbers in G.P. are `1/27, 1/3, 3, 27` or `27, 3, 1/3, 1/27`.
APPEARS IN
संबंधित प्रश्न
Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…
Evaluate `sum_(k=1)^11 (2+3^k )`
Find the sum to n terms of the sequence, 8, 88, 888, 8888… .
Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.
Find the value of n so that `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.
The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.
Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.
The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.
In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.
Find the sum of the following series:
0.6 + 0.66 + 0.666 + .... to n terms
How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?
Find the sum :
\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]
Let an be the nth term of the G.P. of positive numbers.
Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.
Find the rational number whose decimal expansion is \[0 . 423\].
Find the rational numbers having the following decimal expansion:
\[3 . 5\overline 2\]
Find the rational numbers having the following decimal expansion:
\[0 . 6\overline8\]
If a, b, c are in G.P., prove that:
a (b2 + c2) = c (a2 + b2)
If a, b, c are in G.P., prove that:
\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]
If a, b, c are in G.P., prove that:
(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.
If a, b, c, d are in G.P., prove that:
(a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2
If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)
If a, b, c are in G.P., then prove that:
If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.
If A1, A2 be two AM's and G1, G2 be two GM's between a and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]
Write the product of n geometric means between two numbers a and b.
If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
The two geometric means between the numbers 1 and 64 are
Mark the correct alternative in the following question:
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to
For the G.P. if r = `1/3`, a = 9 find t7
For what values of x, the terms `4/3`, x, `4/27` are in G.P.?
If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.
For the following G.P.s, find Sn
0.7, 0.07, 0.007, .....
Find the sum to n terms of the sequence.
0.5, 0.05, 0.005, ...
Find: `sum_("r" = 1)^10 5 xx 3^"r"`
The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.