हिंदी

If (A − B), (B − C), (C − A) Are in G.P., Then Prove that (A + B + C)2 = 3 (Ab + Bc + Ca) - Mathematics

Advertisements
Advertisements

प्रश्न

If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)

उत्तर

\[\left( a - b \right), \left( b - c \right) \text { and  }\left( c - a \right) \text { are in G . P} . \]

\[ \therefore \left( b - c \right)^2 = \left( a - b \right)\left( c - a \right)\]

\[ \Rightarrow b^2 - 2bc + c^2 = ac - bc + ab - a^2 \]

\[ \Rightarrow a^2 + b^2 + c^2 = ab + bc + ca . . . . . . . (i)\]

\[\text{ Now, LHS } = \left( a + b + c \right)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca\]

\[ = ab + bc + ca + 2ab + 2bc + 2ca \left[\text {  Using  }(i) \right]\]

\[ = 3ab + 3bc + 3ca\]

\[ = 3\left( ab + bc + ca \right)\]

\[ = \text { RHS }\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.5 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.5 | Q 12 | पृष्ठ ४६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

For what values of x, the numbers  `-2/7, x, -7/2` are in G.P?


How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?


Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio


Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that P2Rn = Sn


If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

−2/3, −6, −54, ...


Find:

the 10th term of the G.P.

\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]

 


How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\]  ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?


Find the sum :

\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]


The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.


A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.


Find the sum of the terms of an infinite decreasing G.P. in which all the terms are positive, the first term is 4, and the difference between the third and fifth term is equal to 32/81.


Find the rational numbers having the following decimal expansion: 

\[0 . \overline3\]


Find the rational numbers having the following decimal expansion: 

\[0 .\overline {231 }\]


If a, b, c are in G.P., prove that log a, log b, log c are in A.P.


If a, b, c are in G.P., prove that:

(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.


If a, b, c, d are in G.P., prove that:

\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]


If a, b, c are in G.P., prove that the following is also in G.P.:

a3, b3, c3


If a, b, c, d are in G.P., prove that:

(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.


If a, b, c, d are in G.P., prove that:

\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]


If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.


If pth, qth and rth terms of an A.P. and G.P. are both a, b and c respectively, show that \[a^{b - c} b^{c - a} c^{a - b} = 1\]


Find the geometric means of the following pairs of number:

a3b and ab3


If the fifth term of a G.P. is 2, then write the product of its 9 terms.


If logxa, ax/2 and logb x are in G.P., then write the value of x.


Write the product of n geometric means between two numbers a and b

 


The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is 


The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to 


For the G.P. if r = `1/3`, a = 9 find t7


The numbers 3, x, and x + 6 form are in G.P. Find nth term


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`1/2, 1/4, 1/8, 1/16,...`


Express the following recurring decimal as a rational number:

`0.bar(7)`


Answer the following:

For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.


Answer the following:

Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.


Answer the following:

If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0


If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×